Skip to main content

Human Pose

Project description

ControlNet auxiliary models

This is a PyPi installable package of lllyasviel's ControlNet Annotators

The code is copy-pasted from the respective folders in https://github.com/lllyasviel/ControlNet/tree/main/annotator and connected to the 🤗 Hub.

All credit & copyright goes to https://github.com/lllyasviel .

Install

pip install controlnet-aux==0.0.3

Usage

from PIL import Image
import requests
from io import BytesIO
from controlnet_aux import HEDdetector, MidasDetector, MLSDdetector, OpenposeDetector, PidiNetDetector, NormalBaeDetector, LineartDetector, LineartAnimeDetector, CannyDetector, ContentShuffleDetector

# load image
url = "https://huggingface.co/lllyasviel/sd-controlnet-openpose/resolve/main/images/pose.png"

response = requests.get(url)
img = Image.open(BytesIO(response.content)).convert("RGB").resize((512, 512))

# load checkpoints
hed = HEDdetector.from_pretrained("lllyasviel/Annotators")
midas = MidasDetector.from_pretrained("lllyasviel/Annotators")
mlsd = MLSDdetector.from_pretrained("lllyasviel/Annotators")
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
pidi = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
normal_bae = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
lineart = LineartDetector.from_pretrained("lllyasviel/Annotators")
lineart_anime = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")

# instantiate
canny = CannyDetector()
content = ContentShuffleDetector()


# process
processed_image_hed = hed(img)
processed_image_midas = midas(img)
processed_image_mlsd = mlsd(img)
processed_image_open_pose = open_pose(img, hand_and_face=True)
processed_image_pidi = pidi(img, safe=True)
processed_image_normal_bae = normal_bae(img)
processed_image_lineart = lineart(img, coarse=True)
processed_image_lineart_anime = lineart_anime(img)

processed_image_canny = canny(img)
processed_image_content = content(img)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

controlnet_aux-0.0.3.tar.gz (94.8 kB view details)

Uploaded Source

Built Distribution

controlnet_aux-0.0.3-py3-none-any.whl (122.9 kB view details)

Uploaded Python 3

File details

Details for the file controlnet_aux-0.0.3.tar.gz.

File metadata

  • Download URL: controlnet_aux-0.0.3.tar.gz
  • Upload date:
  • Size: 94.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for controlnet_aux-0.0.3.tar.gz
Algorithm Hash digest
SHA256 eb5ce3ad5d3991d3aeff5bdb542c344bacd7a27146f9426dbf6f02488bd03935
MD5 923160a4c243eb9af406b61882b5589e
BLAKE2b-256 008991ddf4b7b6a92d4163a8327e3f46259bd60b085a86d550e53026f93b160c

See more details on using hashes here.

File details

Details for the file controlnet_aux-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: controlnet_aux-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 122.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for controlnet_aux-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 589d63c1325727f6b35daf4f5ebfb0ebf08252943d05fb262aa3175cbcf53273
MD5 f26b32b0534782d9c59d7e79a02adafc
BLAKE2b-256 d6e50dd94fe4fa6032452c51928bd52e3727197e2a6b334bcce887fa772417b0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page