On-Ramp to Deep Learning. Built on Keras
Project description
The On-Ramp to Deep Learning
Built in Python 3 on Keras 2.
Read the documentation at conx.readthedocs.io
Ask questions on the mailing list: conx-users
Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytics. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.
A network can be specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer. However, any complex network can be constructed using the net.connect() method.
Computing XOR via a target function:
import conx as cx
dataset = [[[0, 0], [0]],
[[0, 1], [1]],
[[1, 0], [1]],
[[1, 1], [0]]]
net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.dataset.load(dataset)
net.compile(error='mean_squared_error',
optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)
Creates dynamic, rendered visualizations like this:
Examples
See conx-notebooks and the documentation for additional examples.
Installation
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for conx-3.7.10-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9785632c80ecb9a6f0b53b178c3e1979be3fe804bcc6c45103958aa08fb7a41b |
|
MD5 | 2f4f0542516f1076ed887c821ace47a1 |
|
BLAKE2b-256 | ea015ab3a2de06b76b681376188328d1eef360ee9bb9713863fb1e59e7d3017c |