Skip to main content

Neural network library on Keras

Project description

# conx

Neural Network Library for Cognitive Scientists

Built in Python on Keras

[![CircleCI](https://circleci.com/gh/Calysto/conx/tree/master.svg?style=svg)](https://circleci.com/gh/Calysto/conx/tree/master) [![codecov](https://codecov.io/gh/Calysto/conx/branch/master/graph/badge.svg)](https://codecov.io/gh/Calysto/conx)

Networks implement neural network algorithms. Networks can have as many hidden layers as you desire.

The network is specified to the constructor by providing sizes. For example, Network("XOR", 2, 5, 1) specifies a network named "XOR" with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

## Example

Computing XOR via a target function:

```python
from conx import Network, SGD

dataset = [[[0, 0], [0]],
[[0, 1], [1]],
[[1, 0], [1]],
[[1, 1], [0]]]

net = Network("XOR", 2, 2, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(loss='mean_squared_error',
optimizer=SGD(lr=0.3, momentum=0.9))
net.train(2000, report_rate=10, accuracy=1)
net.test()
```

## Install

```shell
pip install conx -U
```

You will need to decide whether to use Theano or Tensorflow. Pick one:

```shell
pip install theano
```

or

```shell
pip install tensorflow
```

To use Theano as the Keras backend rather than TensorFlow, edit (or create) `~/.keras/kerson.json` to:

```json
{
"backend": "theano",
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32"
}
```

## Examples

See the examples and notebooks folders for additional examples.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.0.0.tar.gz (15.6 kB view details)

Uploaded Source

Built Distribution

conx-3.0.0-py2.py3-none-any.whl (18.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.0.0.tar.gz.

File metadata

  • Download URL: conx-3.0.0.tar.gz
  • Upload date:
  • Size: 15.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for conx-3.0.0.tar.gz
Algorithm Hash digest
SHA256 090c6e13d25244c5a1e742b6709984f17adbd3d630426615a739e064001933b8
MD5 1e2730ec0fdfab771e8360e5d030834a
BLAKE2b-256 9ce942d558e16a7223b45ce03c569e484dd35eda72ec8260a4b275001342ff12

See more details on using hashes here.

File details

Details for the file conx-3.0.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for conx-3.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 cc21403816205beea7a1039f53be13fca2c9ee317e189827f19e40664342188a
MD5 ebb3a6d4d38573153c9f8b3e224e593c
BLAKE2b-256 54b87915e255ad5581c1ac2344bbaba6040c3f13e4960274d8714f0df08680d6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page