Skip to main content

Deep Learning for Simple Folk. Built on Keras

Project description

Deep Learning for Simple Folk

Built in Python on Keras.

CircleCI codecov Documentation Status

Read the documentation at conx.readthedocs.io

Implements Deep Learning neural network algorithms using a simple interface. Built on top of Keras, which can use either TensorFlow or Theano.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Example

Computing XOR via a target function:

from conx import Network, SGD

dataset = [[[0, 0], [0]],
          [[0, 1], [1]],
          [[1, 0], [1]],
          [[1, 1], [0]]]

net = Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(loss='mean_squared_error',
            optimizer=SGD(lr=0.3, momentum=0.9))
net.train(2000, report_rate=10, accuracy=1)
net.test()

Install

pip install conx -U

You will need to decide whether to use Theano or Tensorflow. Pick one:

pip install theano

or

pip install tensorflow

To use Theano as the Keras backend rather than TensorFlow, edit (or create) ~/.keras/kerson.json to:

{
    "backend": "theano",
    "image_data_format": "channels_last",
    "epsilon": 1e-07,
    "floatx": "float32"
}

Examples

See the examples and notebooks folders for additional examples.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.0.2.tar.gz (22.8 kB view details)

Uploaded Source

Built Distribution

conx-3.0.2-py2.py3-none-any.whl (26.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.0.2.tar.gz.

File metadata

  • Download URL: conx-3.0.2.tar.gz
  • Upload date:
  • Size: 22.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for conx-3.0.2.tar.gz
Algorithm Hash digest
SHA256 bdcdeefe4a68169c098404b1ed357fad46b7d5084dcd12144566c02412e69e76
MD5 63e908c3026cf824b51bdc4e9926ff41
BLAKE2b-256 703c47c9eea67d8c274d230345e440fe7bfa2f7f58a807f043cd709cce9be8cb

See more details on using hashes here.

File details

Details for the file conx-3.0.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for conx-3.0.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 3bce241a466a1ea8c5ff7d899b9705295c710912e64101bf5c809df809d2436f
MD5 0fd4431d333cd47e2120e524154889ec
BLAKE2b-256 296c3474dbb95aea79e089f222fb83b771f46699d043676ead7ac8ad8725d28b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page