Skip to main content

Deep Learning for Simple Folk. Built on Keras

Project description

Deep Learning for Simple Folk

Built in Python on Keras.

CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Implements Deep Learning neural network algorithms using a simple interface. Built on top of Keras, which can use either TensorFlow or Theano.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Example

Computing XOR via a target function:

from conx import Network, SGD

dataset = [[[0, 0], [0]],
          [[0, 1], [1]],
          [[1, 0], [1]],
          [[1, 1], [0]]]

net = Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(loss='mean_squared_error',
            optimizer=SGD(lr=0.3, momentum=0.9))
net.train(2000, report_rate=10, accuracy=1)
net.test()

Install

pip install conx -U

You will need to decide whether to use Theano or Tensorflow. Pick one:

pip install theano

or

pip install tensorflow

To use Theano as the Keras backend rather than TensorFlow, edit (or create) ~/.keras/kerson.json to:

{
    "backend": "theano",
    "image_data_format": "channels_last",
    "epsilon": 1e-07,
    "floatx": "float32"
}

Examples

See the examples and notebooks folders for additional examples.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.0.3.tar.gz (23.0 kB view details)

Uploaded Source

Built Distribution

conx-3.0.3-py2.py3-none-any.whl (26.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.0.3.tar.gz.

File metadata

  • Download URL: conx-3.0.3.tar.gz
  • Upload date:
  • Size: 23.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for conx-3.0.3.tar.gz
Algorithm Hash digest
SHA256 dfe65bfaec82e181b1e0db5251b5ce23d66922de5b8f20888afe12ff3f37a3c6
MD5 6a5dc8a76c44461b7bb11f04737fe918
BLAKE2b-256 1412a68afe5fe25c386b152b66f0151be3ca6bf0ea4cd840b5dc514edf60edd2

See more details on using hashes here.

File details

Details for the file conx-3.0.3-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for conx-3.0.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 7f756a6de54bfee5c452bef5a4b377b142b4494297a03e13b25229e557df04c6
MD5 79af44d8d5f2af8b7e74639670951696
BLAKE2b-256 89174b2b845b2037d5f75b5379b073f2863aef4e1ad08eb5fe9a8957cc0e5e4a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page