Deep Learning for Simple Folk. Built on Keras
Project description
Deep Learning for Simple Folk
Built in Python on Keras.
Read the documentation at conx.readthedocs.io
Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.
The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.
Example
Computing XOR via a target function:
from conx import Network, SGD
dataset = [[[0, 0], [0]],
[[0, 1], [1]],
[[1, 0], [1]],
[[1, 1], [0]]]
net = Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(loss='mean_squared_error',
optimizer=SGD(lr=0.3, momentum=0.9))
net.train(2000, report_rate=10, accuracy=1)
net.test()
Install
pip install conx -U
You will need to decide whether to use Theano, TensorFlow, or CNTK. Pick one. See docs.microsoft.com for installing CNTK on Windows or Linux. All platforms can also install either of the others using pip:
pip install theano
or
pip install tensorflow
Note: you may need to use pip3, or admin privileges (eg, sudo), or a user environment.
To use a Keras backend other than TensorFlow, edit (or create) ~/.keras/kerson.json, like:
{
"backend": "theano",
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32"
}
Examples
See the notebooks folder and the documentation for additional examples.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file conx-3.1.0.tar.gz
.
File metadata
- Download URL: conx-3.1.0.tar.gz
- Upload date:
- Size: 33.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d995f01b612dc88a9b4e599d11d4532e66cd2f8b9665fedfa530eef14a709ad9 |
|
MD5 | 8196b1ea88a05d0c8b43f7a5e7f85b4d |
|
BLAKE2b-256 | 6ac6bf54d02d552a7bdcc927ac3ef17e092ad56466b74cce4394be23b1a15696 |
File details
Details for the file conx-3.1.0-py2.py3-none-any.whl
.
File metadata
- Download URL: conx-3.1.0-py2.py3-none-any.whl
- Upload date:
- Size: 38.9 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8e79de0603962d5cbfb8bf48aa46e851a255785e0ed2cbe29091c3e56cd4e30c |
|
MD5 | e70d6e9bbe6fc727b771ab8c2e03add8 |
|
BLAKE2b-256 | 77eba68c5d191d569ed8e434b8cf683964a06375d5139558d16c360d458ed3b9 |