Skip to main content

Deep Learning for Simple Folk. Built on Keras

Project description

Deep Learning for Simple Folk

Built in Python on Keras.

CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Example

Computing XOR via a target function:

from conx import Network, SGD

dataset = [[[0, 0], [0]],
          [[0, 1], [1]],
          [[1, 0], [1]],
          [[1, 1], [0]]]

net = Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(loss='mean_squared_error',
            optimizer=SGD(lr=0.3, momentum=0.9))
net.train(2000, report_rate=10, accuracy=1)
net.test()

Install

pip install conx -U

You will need to decide whether to use Theano, TensorFlow, or CNTK. Pick one. See docs.microsoft.com for installing CNTK on Windows or Linux. All platforms can also install either of the others using pip:

pip install theano

or

pip install tensorflow

Note: you may need to use pip3, or admin privileges (eg, sudo), or a user environment.

To use a Keras backend other than TensorFlow, edit (or create) ~/.keras/kerson.json, like:

{
    "backend": "theano",
    "image_data_format": "channels_last",
    "epsilon": 1e-07,
    "floatx": "float32"
}

Examples

See the notebooks folder and the documentation for additional examples.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.1.1.tar.gz (33.3 kB view details)

Uploaded Source

Built Distribution

conx-3.1.1-py2.py3-none-any.whl (38.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.1.1.tar.gz.

File metadata

  • Download URL: conx-3.1.1.tar.gz
  • Upload date:
  • Size: 33.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for conx-3.1.1.tar.gz
Algorithm Hash digest
SHA256 1b6fb0e45681b404b0bcb3d6455286772e7bf39531b115ef7673313a042c738a
MD5 d774f7abf19b5ee4cfb5a385e062abc1
BLAKE2b-256 5220555c4bbce1e117cdc89fa4cfe765ceac5e534c5bec70b959ea8d2f6618bf

See more details on using hashes here.

File details

Details for the file conx-3.1.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for conx-3.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 94e8b7da95908f35174fff1aca2ce0cf9cd11159f9c30ac5551a4274aa4dc44e
MD5 4d93e375f36ddd43640cc0ee370fc0f2
BLAKE2b-256 317a932f35e31fb91675d810b4e88827bf0cf80b3ed2dedb896b1bcdc92d9cf3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page