Skip to main content

Deep Learning for Simple Folk. Built on Keras

Project description

Deep Learning for Simple Folk

Built in Python 3 on Keras 2.

CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Example

Computing XOR via a target function:

from conx import Network, SGD

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(error='mean_squared_error',
            optimizer=SGD(lr=0.3, momentum=0.9))
net.train(2000, report_rate=10, accuracy=1)
net.test()

Creates dynamic, rendered visualizations like this:

Install

conx requires Python3, and some other Python modules that are installed automatically with pip.

Note: you may need to use pip3, or admin privileges (eg, sudo), or a user environment.

pip install conx -U

You will need to decide whether to use Theano, TensorFlow, or CNTK. Pick one. See docs.microsoft.com for installing CNTK on Windows or Linux. All platforms can also install either of the others using pip:

pip install theano

or

pip install tensorflow

On MacOS, you may also need to render the SVG visualizations:

brew install cairo

Use with Jupyter Notebooks

To use the Network.dashboard() and camera functions, you will need to install and enable ipywidgets:

With pip:

pip install ipywidgets
jupyter nbextension enable --py widgetsnbextension

With conda

conda install -c conda-forge ipywidgets

Installing ipywidgets with conda will also enable the extension for you.

Changing Keras Backends

To use a Keras backend other than TensorFlow, edit (or create) ~/.keras/kerson.json, like:

{
    "backend": "theano",
    "image_data_format": "channels_last",
    "epsilon": 1e-07,
    "floatx": "float32"
}

Examples

See the notebooks folder and the documentation for additional examples.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.2.1.tar.gz (38.8 kB view details)

Uploaded Source

Built Distribution

conx-3.2.1-py2.py3-none-any.whl (43.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.2.1.tar.gz.

File metadata

  • Download URL: conx-3.2.1.tar.gz
  • Upload date:
  • Size: 38.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for conx-3.2.1.tar.gz
Algorithm Hash digest
SHA256 820a23e3ef9fa41b86400851a1fe1905b736f7d2ef4913ef18075d6c24a04e9c
MD5 bc7919d03c31e7bb1d688c47f1d76e58
BLAKE2b-256 64676813296604718b75fb13be0a5744d42c6ad6cf9018845bf21d293070f6cf

See more details on using hashes here.

Provenance

File details

Details for the file conx-3.2.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for conx-3.2.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 08b6522f4f9f954edf640db2458085866334288a2fb8c6563989db0d67823602
MD5 830d66cab348344fa4db64e7cc5d8697
BLAKE2b-256 769ae069911fc6c33a9b1d860e0ae38e8663c4a0c47336b6ea404cf3872477b3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page