Skip to main content

Deep Learning for Simple Folk. Built on Keras

Project description

Deep Learning for Simple Folk

Built in Python 3 on Keras 2.

CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Example

Computing XOR via a target function:

from conx import Network, SGD

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(error='mean_squared_error',
            optimizer=SGD(lr=0.3, momentum=0.9))
net.train(2000, report_rate=10, accuracy=1)
net.test()

Creates dynamic, rendered visualizations like this:

Install

conx requires Python3, and some other Python modules that are installed automatically with pip.

Note: you may need to use pip3, or admin privileges (eg, sudo), or a user environment.

pip install conx -U

You will need to decide whether to use Theano, TensorFlow, or CNTK. Pick one. See docs.microsoft.com for installing CNTK on Windows or Linux. All platforms can also install either of the others using pip:

pip install theano

or

pip install tensorflow

On MacOS, you may also need to render the SVG visualizations:

brew install cairo

Use with Jupyter Notebooks

To use the Network.dashboard() and camera functions, you will need to install and enable ipywidgets:

With pip:

pip install ipywidgets
jupyter nbextension enable --py widgetsnbextension

With conda

conda install -c conda-forge ipywidgets

Installing ipywidgets with conda will also enable the extension for you.

Changing Keras Backends

To use a Keras backend other than TensorFlow, edit (or create) ~/.keras/kerson.json, like:

{
    "backend": "theano",
    "image_data_format": "channels_last",
    "epsilon": 1e-07,
    "floatx": "float32"
}

Examples

See the notebooks folder and the documentation for additional examples.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.3.3.tar.gz (44.7 kB view details)

Uploaded Source

Built Distribution

conx-3.3.3-py2.py3-none-any.whl (50.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.3.3.tar.gz.

File metadata

  • Download URL: conx-3.3.3.tar.gz
  • Upload date:
  • Size: 44.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for conx-3.3.3.tar.gz
Algorithm Hash digest
SHA256 9aea8e2f32f51ddf2ff7b5c18981f2bac028a26241d24a7561a88ffea42e1843
MD5 37ad49c090dee579f22b0f9fbd7b30b4
BLAKE2b-256 451a64f211f70c2cc85e94f8862871eedd7873a68c45fa832d4f45e4512885ad

See more details on using hashes here.

File details

Details for the file conx-3.3.3-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for conx-3.3.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 f1aa6edb3bc6e71e14bd1081dd232b3f99c336b7744304a01cdee631e502bed5
MD5 1f0409d2b9e8b5d126f5c9827ad7ec66
BLAKE2b-256 db17ed1aaa3196fe5d185dcd22ad5f88a91ae6f86798800047f853279cdb76f9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page