Skip to main content

Deep Learning for Simple Folk. Built on Keras

Project description

# conx

## Deep Learning for Simple Folk

Built in Python 3 on Keras 2.

[![CircleCI](https://circleci.com/gh/Calysto/conx/tree/master.svg?style=svg)](https://circleci.com/gh/Calysto/conx/tree/master) [![codecov](https://codecov.io/gh/Calysto/conx/branch/master/graph/badge.svg)](https://codecov.io/gh/Calysto/conx) [![Documentation Status](https://readthedocs.org/projects/conx/badge/?version=latest)](http://conx.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/conx.svg)](https://badge.fury.io/py/conx)

Read the documentation at [conx.readthedocs.io](http://conx.readthedocs.io/)

Ask questions on the mailing list: [conx-users](https://groups.google.com/forum/#!forum/conx-users)

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either [TensorFlow](https://www.tensorflow.org/), [Theano](http://www.deeplearning.net/software/theano/), or [CNTK](https://www.cntk.ai/pythondocs/).

The network is specified to the constructor by providing sizes. For example, Network("XOR", 2, 5, 1) specifies a network named "XOR" with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

## Example

Computing XOR via a target function:

```python
from conx import Network, SGD

dataset = [[[0, 0], [0]],
[[0, 1], [1]],
[[1, 0], [1]],
[[1, 1], [0]]]

net = Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(error='mean_squared_error',
optimizer=SGD(lr=0.3, momentum=0.9))
net.train(2000, report_rate=10, accuracy=1)
net.test()
```

Creates dynamic, rendered visualizations like this:

<img src="https://raw.githubusercontent.com/Calysto/conx/master/notebooks/network.png" width="500"></img>

## Install

`conx` requires Python3, Keras version 2.0.8 or greater, and some other Python modules that are installed automatically with pip.

**Note**: you may need to use pip3, or admin privileges (eg, sudo), or a user environment.

```bash
pip install conx -U
```

You will need to decide whether to use Theano, TensorFlow, or CNTK. Pick one. See [docs.microsoft.com](https://docs.microsoft.com/en-us/cognitive-toolkit/Setup-CNTK-on-your-machine) for installing CNTK on Windows or Linux. All platforms can also install either of the others using pip:

```bash
pip install theano
```

or

```bash
pip install tensorflow
```

On MacOS, you may also need to render the SVG visualizations:

```bash
brew install cairo
```

### Use with Jupyter Notebooks

To use the Network.dashboard() and camera functions, you will need to install and enable `ipywidgets`:

With pip:

``` bash
pip install ipywidgets
jupyter nbextension enable --py widgetsnbextension
```

With conda

``` bash
conda install -c conda-forge ipywidgets
```

Installing **ipywidgets** with conda will also enable the extension for you.

### Changing Keras Backends

To use a Keras backend other than TensorFlow, edit (or create) `~/.keras/kerson.json`, like:

```json
{
"backend": "theano",
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32"
}
```

## Examples

See the [notebooks folder](https://github.com/Calysto/conx/tree/master/notebooks) and the [documentation](http://conx.readthedocs.io/en/latest/) for additional examples.

## Differences with Keras

1. Conx does not allow targets to be a single value. Keras will
automatically turn single values into a onehot encoded vectors. In
conx, you should just convert such "labels" into their encodings
before training.



Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.4.0.tar.gz (52.5 kB view details)

Uploaded Source

Built Distribution

conx-3.4.0-py2.py3-none-any.whl (60.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.4.0.tar.gz.

File metadata

  • Download URL: conx-3.4.0.tar.gz
  • Upload date:
  • Size: 52.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for conx-3.4.0.tar.gz
Algorithm Hash digest
SHA256 d32255f5a2d2aea01ce0a00ae503f4806948b4efeb62e3fc85624e394d8897c4
MD5 1a83169f78c6001c818d0de9a53a191c
BLAKE2b-256 96f58896533711e628f2426a3b4cb8127649737dd4382721a6b62deb7a7308d8

See more details on using hashes here.

File details

Details for the file conx-3.4.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for conx-3.4.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 4fa9d5439ab8be2fbad7fb5fdfedff7bbc1a5404bc2fd56198093c5ec8b1d3ca
MD5 d18ff58cf36bbac3b414851725411c14
BLAKE2b-256 e808041dcfb5f7c12989546db7a3086d05cdfd78090cd7caeaa3e1e90b07946a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page