Skip to main content

Deep Learning for Simple Folk. Built on Keras

Project description

# conx

## Deep Learning for Simple Folk

Built in Python 3 on Keras 2.

[![CircleCI](https://circleci.com/gh/Calysto/conx/tree/master.svg?style=svg)](https://circleci.com/gh/Calysto/conx/tree/master) [![codecov](https://codecov.io/gh/Calysto/conx/branch/master/graph/badge.svg)](https://codecov.io/gh/Calysto/conx) [![Documentation Status](https://readthedocs.org/projects/conx/badge/?version=latest)](http://conx.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/conx.svg)](https://badge.fury.io/py/conx)

Read the documentation at [conx.readthedocs.io](http://conx.readthedocs.io/)

Ask questions on the mailing list: [conx-users](https://groups.google.com/forum/#!forum/conx-users)

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either [TensorFlow](https://www.tensorflow.org/), [Theano](http://www.deeplearning.net/software/theano/), or [CNTK](https://www.cntk.ai/pythondocs/).

The network is specified to the constructor by providing sizes. For example, Network("XOR", 2, 5, 1) specifies a network named "XOR" with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

## Example

Computing XOR via a target function:

```python
from conx import Network, SGD

dataset = [[[0, 0], [0]],
[[0, 1], [1]],
[[1, 0], [1]],
[[1, 1], [0]]]

net = Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(error='mean_squared_error',
optimizer=SGD(lr=0.3, momentum=0.9))
net.train(2000, report_rate=10, accuracy=1)
net.test()
```

Creates dynamic, rendered visualizations like this:

<img src="https://raw.githubusercontent.com/Calysto/conx/master/notebooks/network.png" width="500"></img>

## Install

`conx` requires Python3, Keras version 2.0.8 or greater, and some other Python modules that are installed automatically with pip.

**Note**: you may need to use pip3, or admin privileges (eg, sudo), or a user environment.

```bash
pip install conx -U
```

You will need to decide whether to use Theano, TensorFlow, or CNTK. Pick one. See [docs.microsoft.com](https://docs.microsoft.com/en-us/cognitive-toolkit/Setup-CNTK-on-your-machine) for installing CNTK on Windows or Linux. All platforms can also install either of the others using pip:

```bash
pip install theano
```

or

```bash
pip install tensorflow
```

On MacOS, you may also need to render the SVG visualizations:

```bash
brew install cairo
```

### Use with Jupyter Notebooks

To use the Network.dashboard() and camera functions, you will need to install and enable `ipywidgets`:

With pip:

``` bash
pip install ipywidgets
jupyter nbextension enable --py widgetsnbextension
```

With conda

``` bash
conda install -c conda-forge ipywidgets
```

Installing **ipywidgets** with conda will also enable the extension for you.

### Changing Keras Backends

To use a Keras backend other than TensorFlow, edit (or create) `~/.keras/kerson.json`, like:

```json
{
"backend": "theano",
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32"
}
```

## Examples

See the [notebooks folder](https://github.com/Calysto/conx/tree/master/notebooks) and the [documentation](http://conx.readthedocs.io/en/latest/) for additional examples.

## Differences with Keras

1. Conx does not allow targets to be a single value. Keras will
automatically turn single values into a onehot encoded vectors. In
conx, you should just convert such "labels" into their encodings
before training.



Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.4.3.tar.gz (52.7 kB view details)

Uploaded Source

Built Distribution

conx-3.4.3-py2.py3-none-any.whl (60.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.4.3.tar.gz.

File metadata

  • Download URL: conx-3.4.3.tar.gz
  • Upload date:
  • Size: 52.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for conx-3.4.3.tar.gz
Algorithm Hash digest
SHA256 c8a254b6aee2ad98d275d228c9eb62c4e1fa9114d8406728994dd97cdf180bf4
MD5 78d2eb0a41f35dc6d51909c53ecd5bcd
BLAKE2b-256 9a67522e6a38741b7659a28c9484bcb7e568cc2e4b36ca11a9484b9db7514263

See more details on using hashes here.

File details

Details for the file conx-3.4.3-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for conx-3.4.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b89ed3e08cc443047101e63428fa57274fb5226d476494ecea7a7237cc00cb1b
MD5 13b59aed6fe22f27904ed31c79c48ec0
BLAKE2b-256 41a582c7ee2d3cbf436d4916ef37cd6ee5ee3ebf5126912fed5aca84dc71ed8b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page