Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

Binder CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Computing XOR via a target function:

import conx as cx

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(error='mean_squared_error',
            optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)

Creates dynamic, rendered visualizations like this:

Examples

See conx-notebooks and the documentation for additional examples.

Installation

to see options on running virtual machines, in the cloud, and personal
installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.6.1.tar.gz (84.3 kB view details)

Uploaded Source

Built Distribution

conx-3.6.1-py2.py3-none-any.whl (92.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.6.1.tar.gz.

File metadata

  • Download URL: conx-3.6.1.tar.gz
  • Upload date:
  • Size: 84.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for conx-3.6.1.tar.gz
Algorithm Hash digest
SHA256 d68eed1884446e3ee4e856a513cb3446c0a381ac77151bd2f18cd8263aa4279d
MD5 54e8c6028f263e11348e4835ec6becfe
BLAKE2b-256 89341a2bdbbec2323c52abdf16e6f822d4c3f0e104e2ec604d8fd536f2d7727c

See more details on using hashes here.

File details

Details for the file conx-3.6.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for conx-3.6.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 c82530d33a9ed7e555a928a2fb70a06112165539aaff2de07f2419341929e19b
MD5 43ba8516ad63afa38229d4bf12e675f9
BLAKE2b-256 508344a129b72238fd333ef99d14df5df899cb4fbe932ad375974876f67a97e9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page