Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

Binder CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Computing XOR via a target function:

import conx as cx

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(error='mean_squared_error',
            optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)

Creates dynamic, rendered visualizations like this:

Examples

See conx-notebooks and the documentation for additional examples.

Installation

to see options on running virtual machines, in the cloud, and personal
installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.6.2.tar.gz (84.4 kB view details)

Uploaded Source

Built Distribution

conx-3.6.2-py2.py3-none-any.whl (92.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.6.2.tar.gz.

File metadata

  • Download URL: conx-3.6.2.tar.gz
  • Upload date:
  • Size: 84.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for conx-3.6.2.tar.gz
Algorithm Hash digest
SHA256 d0502e6bdf2afd21e669fccf802ec31ab86bdfe30eb7de601a2603bc6c426231
MD5 a730745a47f8602d2456a5b47ae978ba
BLAKE2b-256 4fd1c5ed28bb16f9438c8ddaf10aa3d128efc13be8c083d7d8f66952399dc03a

See more details on using hashes here.

File details

Details for the file conx-3.6.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for conx-3.6.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 7a419447ec34416c935b45c4e1b77ee6eb2211ce88e0c2c8c1ec194e161e2992
MD5 2fb92a142b655333a4e8a2effde1e0c9
BLAKE2b-256 9c3afcd05948134ee8913a1d2f4574f73bd2b34098e026e49d41860011515273

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page