Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

Binder CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Computing XOR via a target function:

import conx as cx

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(error='mean_squared_error',
            optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)

Creates dynamic, rendered visualizations like this:

Examples

See conx-notebooks and the documentation for additional examples.

Installation

to see options on running virtual machines, in the cloud, and personal
installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.6.3.tar.gz (85.2 kB view details)

Uploaded Source

Built Distribution

conx-3.6.3-py2.py3-none-any.whl (92.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.6.3.tar.gz.

File metadata

  • Download URL: conx-3.6.3.tar.gz
  • Upload date:
  • Size: 85.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for conx-3.6.3.tar.gz
Algorithm Hash digest
SHA256 6cd806c0ac5777f7c007bb4c495d4b065a41e4818e630a295263298fb9f9e0af
MD5 efb85ae37a523d7e63624e6b030667d1
BLAKE2b-256 17625cb2493cc781908424da1008d3b720443640bc6ae95c1e54cede0bcdfe92

See more details on using hashes here.

File details

Details for the file conx-3.6.3-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for conx-3.6.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 468c33603c69771875afc1d3bf892f476799d46755fba65421568a6fbf97061f
MD5 cd3fb15ae1b043a8a7e84115aa252e1c
BLAKE2b-256 486f90ecab7e22b0aed4cd5794ceac3624970f52536a98906402b0e8d5f2b368

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page