Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

Binder CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Computing XOR via a target function:

import conx as cx

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(error='mean_squared_error',
            optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)

Creates dynamic, rendered visualizations like this:

Examples

See conx-notebooks and the documentation for additional examples.

Installation

to see options on running virtual machines, in the cloud, and personal
installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.6.4.tar.gz (85.4 kB view details)

Uploaded Source

Built Distribution

conx-3.6.4-py2.py3-none-any.whl (92.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.6.4.tar.gz.

File metadata

  • Download URL: conx-3.6.4.tar.gz
  • Upload date:
  • Size: 85.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for conx-3.6.4.tar.gz
Algorithm Hash digest
SHA256 628285c817b12d312b089ed8a9a5fa75ec9ecda74dc9ac218e774051b3af0f79
MD5 ec6510648561e1e58be883076743f75e
BLAKE2b-256 78ecc52a352afe39281f1ff3ebc8cf602d113b1bb10d9e0c56e74d396ced9263

See more details on using hashes here.

File details

Details for the file conx-3.6.4-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for conx-3.6.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 05707f8c0873677571a61e3902e3cb2e93ad7be5ead778565b2b2ac4ac1d60de
MD5 3665229f9dbee3696760c1276f519987
BLAKE2b-256 212c66a31f57f2828a0effacf194f906772c6e0250f52371135ed2cb083cea4c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page