Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

Binder CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Computing XOR via a target function:

import conx as cx

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(error='mean_squared_error',
            optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)

Creates dynamic, rendered visualizations like this:

Examples

See conx-notebooks and the documentation for additional examples.

Installation

to see options on running virtual machines, in the cloud, and personal
installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.6.5.tar.gz (86.4 kB view details)

Uploaded Source

Built Distribution

conx-3.6.5-py2.py3-none-any.whl (91.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.6.5.tar.gz.

File metadata

  • Download URL: conx-3.6.5.tar.gz
  • Upload date:
  • Size: 86.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for conx-3.6.5.tar.gz
Algorithm Hash digest
SHA256 6b3a6d4a5d6a83a7bfdadeca22f1a10e782dbdfbeaa07905672c08245e140087
MD5 a2d7cef70cb86f20bdc81fcc91463e58
BLAKE2b-256 3e7419ac5d58e3aa64bf70adc59e4ffa0cd947e00d6bc91c8265280e158be103

See more details on using hashes here.

File details

Details for the file conx-3.6.5-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for conx-3.6.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 a75cf9902c15a0b0533f1b6a656f0395f04431ef8bd7a97b6f2a8ee15ff1666c
MD5 1b062ecdc6c09ca5af3ed85dc063a738
BLAKE2b-256 f5dbeef16087dac743b726cd4395aaccf1fe7b088b0dd89d73531629d673bf16

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page