Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

Binder CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Computing XOR via a target function:

import conx as cx

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(error='mean_squared_error',
            optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)

Creates dynamic, rendered visualizations like this:

Examples

See conx-notebooks and the documentation for additional examples.

Installation

to see options on running virtual machines, in the cloud, and personal
installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.6.6.tar.gz (87.9 kB view details)

Uploaded Source

Built Distribution

conx-3.6.6-py2.py3-none-any.whl (92.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.6.6.tar.gz.

File metadata

  • Download URL: conx-3.6.6.tar.gz
  • Upload date:
  • Size: 87.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for conx-3.6.6.tar.gz
Algorithm Hash digest
SHA256 fed0d3419c14c6d9ce98e8a4767a3478b69e42e15c35e90ae338da09a0eaa47d
MD5 262a94ec1687b3f66c37e46b6f041a75
BLAKE2b-256 e6cf3007479992d7f284043b913b34fb44ef7978267bd2f32e98b70bdc1e2786

See more details on using hashes here.

File details

Details for the file conx-3.6.6-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for conx-3.6.6-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 4eec450615edbf8710f27847258cb1e7b266815115f8fe177d460112cafe7c95
MD5 47d0bd12908d2fe58e1ba1b5a9c77a85
BLAKE2b-256 578fa59234b84b68437a4ad99f2c0f9abcacde78ea738358ffa6f3c9652a9ff2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page