Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

Binder CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Computing XOR via a target function:

import conx as cx

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(error='mean_squared_error',
            optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)

Creates dynamic, rendered visualizations like this:

Examples

See conx-notebooks and the documentation for additional examples.

Installation

to see options on running virtual machines, in the cloud, and personal
installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.6.7.tar.gz (87.9 kB view details)

Uploaded Source

Built Distribution

conx-3.6.7-py2.py3-none-any.whl (92.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.6.7.tar.gz.

File metadata

  • Download URL: conx-3.6.7.tar.gz
  • Upload date:
  • Size: 87.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for conx-3.6.7.tar.gz
Algorithm Hash digest
SHA256 8ee6cabfa476ee3c7402795ea253560dac7040bdb30122bc01485a7e184b75ba
MD5 5af412a236b5bcc7cce61f9f6271fce5
BLAKE2b-256 b9b11239cce93d2bc71d3fcb64ffaacf96c70841ba0b38acce48deca8091e934

See more details on using hashes here.

File details

Details for the file conx-3.6.7-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for conx-3.6.7-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 f55811546c1d7601971dc790485a7368a3fe43c04179951a981af3a5218fa934
MD5 d6182d6dd722ded157799bef4a12c0bc
BLAKE2b-256 12f20ca8ccc3d1a6aba18a80dd6cdaacd872b3c723b383386684f98c98351d82

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page