Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

Binder CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Computing XOR via a target function:

import conx as cx

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.set_dataset(dataset)
net.compile(error='mean_squared_error',
            optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)

Creates dynamic, rendered visualizations like this:

Examples

See conx-notebooks and the documentation for additional examples.

Installation

to see options on running virtual machines, in the cloud, and personal
installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.6.9.tar.gz (89.8 kB view details)

Uploaded Source

Built Distribution

conx-3.6.9-py2.py3-none-any.whl (95.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.6.9.tar.gz.

File metadata

  • Download URL: conx-3.6.9.tar.gz
  • Upload date:
  • Size: 89.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for conx-3.6.9.tar.gz
Algorithm Hash digest
SHA256 7bd652a740557185c23d03cd02cddb49656cebde8176d1fb51918008b3e29731
MD5 3ae5068f4e68aa0526f96382f0eaa4b3
BLAKE2b-256 8944454f397298936c8e153128484e78d6c0a26fe3ed827cc7c049ff5d801ec5

See more details on using hashes here.

File details

Details for the file conx-3.6.9-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for conx-3.6.9-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1b14d42a7a833f8b309b31b67a717a5eebb3b1aeb6eb4b63078ae124bc8b4913
MD5 4d4a666cc9588cd7ec9250888804e84b
BLAKE2b-256 7d30246241d532316a11fa39a9093c81189d59347bdac4afaab25f76582d3923

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page