Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

Binder CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Computing XOR via a target function:

import conx as cx

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.dataset.load(dataset)
net.compile(error='mean_squared_error',
            optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)

Creates dynamic, rendered visualizations like this:

Examples

See conx-notebooks and the documentation for additional examples.

Installation

to see options on running virtual machines, in the cloud, and personal
installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.7.0.tar.gz (90.3 kB view details)

Uploaded Source

Built Distribution

conx-3.7.0-py2.py3-none-any.whl (97.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.7.0.tar.gz.

File metadata

  • Download URL: conx-3.7.0.tar.gz
  • Upload date:
  • Size: 90.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for conx-3.7.0.tar.gz
Algorithm Hash digest
SHA256 92de2c7075d0be15c09456a5ee1781e289cad2e6aee9d1fc22cfba05e977757e
MD5 63218acf1a7983402c328cfe674c218e
BLAKE2b-256 05f22a653ece7a7ee2d985a6463c82d3c0e1a22e804a93d9aff0343f42c86c45

See more details on using hashes here.

File details

Details for the file conx-3.7.0-py2.py3-none-any.whl.

File metadata

  • Download URL: conx-3.7.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 97.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for conx-3.7.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d2bde530256d4fcc8ba69c03f252267e44b6446a59fad8a69674ae9f41deca35
MD5 e01ed4b99bc206649f9a4f074ee5dfdf
BLAKE2b-256 4f04aaa474780111e19492193828f78cf88a2c602af030f57b1ecd92b10f878d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page