Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

Binder CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Computing XOR via a target function:

import conx as cx

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.dataset.load(dataset)
net.compile(error='mean_squared_error',
            optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)

Creates dynamic, rendered visualizations like this:

Examples

See conx-notebooks and the documentation for additional examples.

Installation

to see options on running virtual machines, in the cloud, and personal
installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.7.1.tar.gz (91.0 kB view details)

Uploaded Source

Built Distribution

conx-3.7.1-py2.py3-none-any.whl (98.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.7.1.tar.gz.

File metadata

  • Download URL: conx-3.7.1.tar.gz
  • Upload date:
  • Size: 91.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for conx-3.7.1.tar.gz
Algorithm Hash digest
SHA256 7dd442ced09a07d03eff0013d6d79d7858484f48962ebff08b865ea8a3225038
MD5 6c32436514c7d46b2ed10f36e5d1e1a5
BLAKE2b-256 966883736199b3975aa33c8bd7b0ccd88e508c3c8644d282cba9ed0d48c13097

See more details on using hashes here.

File details

Details for the file conx-3.7.1-py2.py3-none-any.whl.

File metadata

  • Download URL: conx-3.7.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 98.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for conx-3.7.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 82f8f03f46b19307c2cc74005102651524eaa1b25bcf2a323d167b12dc038063
MD5 306fad5d28ae09bc203b97ffdc302e8f
BLAKE2b-256 b3e813d9d8351576e9b7e977f2b13f079d566c29a2f21b285fd8c3dab01ede66

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page