Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

Binder
CircleCI
codecov
Documentation Status
PyPI version
PyPI downloads

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytics. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

A network can be specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer. However, any complex network can be constructed using the net.connect() method.

Computing XOR via a target function:

import conx as cx

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.dataset.load(dataset)
net.compile(error='mean_squared_error',
            optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)

Creates dynamic, rendered visualizations like this:

Examples

See conx-notebooks and the documentation for additional examples.

Installation

to see options on running virtual machines, in the cloud, and personal
installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.7.10.tar.gz (105.0 kB view details)

Uploaded Source

Built Distribution

conx-3.7.10-py2.py3-none-any.whl (109.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.7.10.tar.gz.

File metadata

  • Download URL: conx-3.7.10.tar.gz
  • Upload date:
  • Size: 105.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for conx-3.7.10.tar.gz
Algorithm Hash digest
SHA256 7efea8f37ceee3aec07ed99013140c9da0d1f193745baa07ef711021511b24c2
MD5 de77ee8e0776d6d52cd8f293ca16d199
BLAKE2b-256 37c86b5d8426e63af47e023f0260cd54a0517b0f3c2c8edcb651070e269add47

See more details on using hashes here.

File details

Details for the file conx-3.7.10-py2.py3-none-any.whl.

File metadata

  • Download URL: conx-3.7.10-py2.py3-none-any.whl
  • Upload date:
  • Size: 109.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for conx-3.7.10-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 9785632c80ecb9a6f0b53b178c3e1979be3fe804bcc6c45103958aa08fb7a41b
MD5 2f4f0542516f1076ed887c821ace47a1
BLAKE2b-256 ea015ab3a2de06b76b681376188328d1eef360ee9bb9713863fb1e59e7d3017c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page