Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

Binder CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytical. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

The network is specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer.

Computing XOR via a target function:

import conx as cx

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.dataset.load(dataset)
net.compile(error='mean_squared_error',
            optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)

Creates dynamic, rendered visualizations like this:

Examples

See conx-notebooks and the documentation for additional examples.

Installation

to see options on running virtual machines, in the cloud, and personal
installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.7.3.tar.gz (91.9 kB view details)

Uploaded Source

Built Distribution

conx-3.7.3-py2.py3-none-any.whl (99.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.7.3.tar.gz.

File metadata

  • Download URL: conx-3.7.3.tar.gz
  • Upload date:
  • Size: 91.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for conx-3.7.3.tar.gz
Algorithm Hash digest
SHA256 b8eacf04c935f9f097d8c29647b608d3043925359144d5ed2a1b37286b26546f
MD5 cf679f527fdc2ac0bd22c3aad22e1bf0
BLAKE2b-256 42cd20f0b72d2bf66f58020d1bfed2f4cf378813cc36b50557e8bd2e12125099

See more details on using hashes here.

File details

Details for the file conx-3.7.3-py2.py3-none-any.whl.

File metadata

  • Download URL: conx-3.7.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 99.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for conx-3.7.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 7ab68a0940f8beebf7baf3d4e0c49a2c8683691acb47ceef72b906e6faf4067d
MD5 8c0bd6b7d16efd638a0eadebfb1873ce
BLAKE2b-256 78e29ea117fc0f0435ba37729061818fc5cc45dcdecb5d8d47b53cad34c094b9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page