Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

Binder CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytics. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

A network can be specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer. However, any complex network can be constructed using the net.connect() method.

Computing XOR via a target function:

import conx as cx

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.dataset.load(dataset)
net.compile(error='mean_squared_error',
            optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)

Creates dynamic, rendered visualizations like this:

Examples

See conx-notebooks and the documentation for additional examples.

Installation

to see options on running virtual machines, in the cloud, and personal
installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.7.4.tar.gz (95.5 kB view details)

Uploaded Source

Built Distribution

conx-3.7.4-py2.py3-none-any.whl (102.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.7.4.tar.gz.

File metadata

  • Download URL: conx-3.7.4.tar.gz
  • Upload date:
  • Size: 95.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.5

File hashes

Hashes for conx-3.7.4.tar.gz
Algorithm Hash digest
SHA256 f6a6ab2adcbf5aa005b65d6d71ff2efdded81c89f4f721e10d0aaf3a435e1f8e
MD5 8de95913eb090f688cb854e31e9b26de
BLAKE2b-256 e135442341d4b39f449d1fba533b2f391ea9c61ff8e82d72a76d78d9710dfc10

See more details on using hashes here.

File details

Details for the file conx-3.7.4-py2.py3-none-any.whl.

File metadata

  • Download URL: conx-3.7.4-py2.py3-none-any.whl
  • Upload date:
  • Size: 102.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.5

File hashes

Hashes for conx-3.7.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ff3db7c42f6e0d89482b20d6c8559bbd1fd18c610d5cc31c2c94673b30e3cca5
MD5 7342bcdab55bdb89892ea6a1a0776daa
BLAKE2b-256 5b17cba6d4430b37a13d7f48cf00e2f83f6ec47396bf30312c2d24bb5da0572b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page