Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

Binder CircleCI codecov Documentation Status PyPI version

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytics. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

A network can be specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer. However, any complex network can be constructed using the net.connect() method.

Computing XOR via a target function:

import conx as cx

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.dataset.load(dataset)
net.compile(error='mean_squared_error',
            optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)

Creates dynamic, rendered visualizations like this:

Examples

See conx-notebooks and the documentation for additional examples.

Installation

to see options on running virtual machines, in the cloud, and personal
installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.7.5.tar.gz (104.4 kB view details)

Uploaded Source

Built Distribution

conx-3.7.5-py2.py3-none-any.whl (112.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.7.5.tar.gz.

File metadata

  • Download URL: conx-3.7.5.tar.gz
  • Upload date:
  • Size: 104.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.5

File hashes

Hashes for conx-3.7.5.tar.gz
Algorithm Hash digest
SHA256 2019708b54669db59acd009c32355b0c876aa743d75e3e182f72a01533aeafea
MD5 1144fbc1945cebecac63589a085b61ee
BLAKE2b-256 b12de70f2d2173795f9b81cb8ef2d9ba69292c3c3cef98681b71095b26f45a10

See more details on using hashes here.

Provenance

File details

Details for the file conx-3.7.5-py2.py3-none-any.whl.

File metadata

  • Download URL: conx-3.7.5-py2.py3-none-any.whl
  • Upload date:
  • Size: 112.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.5

File hashes

Hashes for conx-3.7.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 98f67c1fe505c1d54b8e7a6892b56351121ab7938fd3c8ccc3691f257319a207
MD5 5a46e0256ca4b8e3cb0829292f22173b
BLAKE2b-256 5d662282adccc877b48813daa23905bd331b12b9be8aa14c9617ccf3d37d3e49

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page