On-Ramp to Deep Learning. Built on Keras
Project description
# ConX Neural Networks
## The On-Ramp to Deep Learning
Built in Python 3 on Keras 2.
[![Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/Calysto/conx/master?filepath=binder%2Findex.ipynb) [![CircleCI](https://circleci.com/gh/Calysto/conx/tree/master.svg?style=svg)](https://circleci.com/gh/Calysto/conx/tree/master) [![codecov](https://codecov.io/gh/Calysto/conx/branch/master/graph/badge.svg)](https://codecov.io/gh/Calysto/conx) [![Documentation Status](https://readthedocs.org/projects/conx/badge/?version=latest)](http://conx.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/conx.svg)](https://badge.fury.io/py/conx)
Read the documentation at [conx.readthedocs.io](http://conx.readthedocs.io/)
Ask questions on the mailing list: [conx-users](https://groups.google.com/forum/#!forum/conx-users)
Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytics. Built on top of Keras, which can use either [TensorFlow](https://www.tensorflow.org/), [Theano](http://www.deeplearning.net/software/theano/), or [CNTK](https://www.cntk.ai/pythondocs/).
A network can be specified to the constructor by providing sizes. For example, Network("XOR", 2, 5, 1) specifies a network named "XOR" with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer. However, any complex network can be constructed using the `net.connect()` method.
Computing XOR via a target function:
```python
import conx as cx
dataset = [[[0, 0], [0]],
[[0, 1], [1]],
[[1, 0], [1]],
[[1, 1], [0]]]
net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.dataset.load(dataset)
net.compile(error='mean_squared_error',
optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)
```
Creates dynamic, rendered visualizations like this:
<img src="https://raw.githubusercontent.com/Calysto/conx-notebooks/master/network.png" width="500"></img>
## Examples
See [conx-notebooks](https://github.com/Calysto/conx-notebooks/blob/master/00_Index.ipynb) and the [documentation](http://conx.readthedocs.io/en/latest/) for additional examples.
## Installation
See [How To Run Conx](https://github.com/Calysto/conx-notebooks/tree/master/HowToRun#how-to-run-conx)
to see options on running virtual machines, in the cloud, and personal
installation.
## The On-Ramp to Deep Learning
Built in Python 3 on Keras 2.
[![Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/Calysto/conx/master?filepath=binder%2Findex.ipynb) [![CircleCI](https://circleci.com/gh/Calysto/conx/tree/master.svg?style=svg)](https://circleci.com/gh/Calysto/conx/tree/master) [![codecov](https://codecov.io/gh/Calysto/conx/branch/master/graph/badge.svg)](https://codecov.io/gh/Calysto/conx) [![Documentation Status](https://readthedocs.org/projects/conx/badge/?version=latest)](http://conx.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/conx.svg)](https://badge.fury.io/py/conx)
Read the documentation at [conx.readthedocs.io](http://conx.readthedocs.io/)
Ask questions on the mailing list: [conx-users](https://groups.google.com/forum/#!forum/conx-users)
Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytics. Built on top of Keras, which can use either [TensorFlow](https://www.tensorflow.org/), [Theano](http://www.deeplearning.net/software/theano/), or [CNTK](https://www.cntk.ai/pythondocs/).
A network can be specified to the constructor by providing sizes. For example, Network("XOR", 2, 5, 1) specifies a network named "XOR" with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer. However, any complex network can be constructed using the `net.connect()` method.
Computing XOR via a target function:
```python
import conx as cx
dataset = [[[0, 0], [0]],
[[0, 1], [1]],
[[1, 0], [1]],
[[1, 1], [0]]]
net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.dataset.load(dataset)
net.compile(error='mean_squared_error',
optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)
```
Creates dynamic, rendered visualizations like this:
<img src="https://raw.githubusercontent.com/Calysto/conx-notebooks/master/network.png" width="500"></img>
## Examples
See [conx-notebooks](https://github.com/Calysto/conx-notebooks/blob/master/00_Index.ipynb) and the [documentation](http://conx.readthedocs.io/en/latest/) for additional examples.
## Installation
See [How To Run Conx](https://github.com/Calysto/conx-notebooks/tree/master/HowToRun#how-to-run-conx)
to see options on running virtual machines, in the cloud, and personal
installation.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
conx-3.7.6.tar.gz
(103.7 kB
view details)
Built Distribution
conx-3.7.6-py2.py3-none-any.whl
(110.7 kB
view details)
File details
Details for the file conx-3.7.6.tar.gz
.
File metadata
- Download URL: conx-3.7.6.tar.gz
- Upload date:
- Size: 103.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 35663a1cbcc8a9a40f0d2e541752dcec10424a3269c6eb652fcfef0ce96857dd |
|
MD5 | 58710d69d294facdf6332e914a230026 |
|
BLAKE2b-256 | 5daddf0fdf4b00a36ce54fbb0833e0c524994535e598d81f71fa1deca5cbba4c |
File details
Details for the file conx-3.7.6-py2.py3-none-any.whl
.
File metadata
- Download URL: conx-3.7.6-py2.py3-none-any.whl
- Upload date:
- Size: 110.7 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 454796a8323047d042f529012cad5a4f16c066770cf1f54b6447ed04368fd93e |
|
MD5 | b18954240869a5ce9e2858fc88519f56 |
|
BLAKE2b-256 | 090964a0b9b3d2f0c7a48dcdee0ac297dd06301673a2da9e934c03e39225e787 |