Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

# ConX Neural Networks

## The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

[![Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/Calysto/conx/master?filepath=binder%2Findex.ipynb) [![CircleCI](https://circleci.com/gh/Calysto/conx/tree/master.svg?style=svg)](https://circleci.com/gh/Calysto/conx/tree/master) [![codecov](https://codecov.io/gh/Calysto/conx/branch/master/graph/badge.svg)](https://codecov.io/gh/Calysto/conx) [![Documentation Status](https://readthedocs.org/projects/conx/badge/?version=latest)](http://conx.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/conx.svg)](https://badge.fury.io/py/conx)

Read the documentation at [conx.readthedocs.io](http://conx.readthedocs.io/)

Ask questions on the mailing list: [conx-users](https://groups.google.com/forum/#!forum/conx-users)

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytics. Built on top of Keras, which can use either [TensorFlow](https://www.tensorflow.org/), [Theano](http://www.deeplearning.net/software/theano/), or [CNTK](https://www.cntk.ai/pythondocs/).

A network can be specified to the constructor by providing sizes. For example, Network("XOR", 2, 5, 1) specifies a network named "XOR" with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer. However, any complex network can be constructed using the `net.connect()` method.

Computing XOR via a target function:

```python
import conx as cx

dataset = [[[0, 0], [0]],
[[0, 1], [1]],
[[1, 0], [1]],
[[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.dataset.load(dataset)
net.compile(error='mean_squared_error',
optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)
```

Creates dynamic, rendered visualizations like this:

<img src="https://raw.githubusercontent.com/Calysto/conx-notebooks/master/network.png" width="500"></img>

## Examples

See [conx-notebooks](https://github.com/Calysto/conx-notebooks/blob/master/00_Index.ipynb) and the [documentation](http://conx.readthedocs.io/en/latest/) for additional examples.

## Installation

See [How To Run Conx](https://github.com/Calysto/conx-notebooks/tree/master/HowToRun#how-to-run-conx)
to see options on running virtual machines, in the cloud, and personal
installation.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.7.6.tar.gz (103.7 kB view details)

Uploaded Source

Built Distribution

conx-3.7.6-py2.py3-none-any.whl (110.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.7.6.tar.gz.

File metadata

  • Download URL: conx-3.7.6.tar.gz
  • Upload date:
  • Size: 103.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.6

File hashes

Hashes for conx-3.7.6.tar.gz
Algorithm Hash digest
SHA256 35663a1cbcc8a9a40f0d2e541752dcec10424a3269c6eb652fcfef0ce96857dd
MD5 58710d69d294facdf6332e914a230026
BLAKE2b-256 5daddf0fdf4b00a36ce54fbb0833e0c524994535e598d81f71fa1deca5cbba4c

See more details on using hashes here.

File details

Details for the file conx-3.7.6-py2.py3-none-any.whl.

File metadata

  • Download URL: conx-3.7.6-py2.py3-none-any.whl
  • Upload date:
  • Size: 110.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.6

File hashes

Hashes for conx-3.7.6-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 454796a8323047d042f529012cad5a4f16c066770cf1f54b6447ed04368fd93e
MD5 b18954240869a5ce9e2858fc88519f56
BLAKE2b-256 090964a0b9b3d2f0c7a48dcdee0ac297dd06301673a2da9e934c03e39225e787

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page