Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

# ConX Neural Networks

## The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

[![Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/Calysto/conx/master?filepath=binder%2Findex.ipynb) [![CircleCI](https://circleci.com/gh/Calysto/conx/tree/master.svg?style=svg)](https://circleci.com/gh/Calysto/conx/tree/master) [![codecov](https://codecov.io/gh/Calysto/conx/branch/master/graph/badge.svg)](https://codecov.io/gh/Calysto/conx) [![Documentation Status](https://readthedocs.org/projects/conx/badge/?version=latest)](http://conx.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/conx.svg)](https://badge.fury.io/py/conx)

Read the documentation at [conx.readthedocs.io](http://conx.readthedocs.io/)

Ask questions on the mailing list: [conx-users](https://groups.google.com/forum/#!forum/conx-users)

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytics. Built on top of Keras, which can use either [TensorFlow](https://www.tensorflow.org/), [Theano](http://www.deeplearning.net/software/theano/), or [CNTK](https://www.cntk.ai/pythondocs/).

A network can be specified to the constructor by providing sizes. For example, Network("XOR", 2, 5, 1) specifies a network named "XOR" with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer. However, any complex network can be constructed using the `net.connect()` method.

Computing XOR via a target function:

```python
import conx as cx

dataset = [[[0, 0], [0]],
[[0, 1], [1]],
[[1, 0], [1]],
[[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.dataset.load(dataset)
net.compile(error='mean_squared_error',
optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)
```

Creates dynamic, rendered visualizations like this:

<img src="https://raw.githubusercontent.com/Calysto/conx-notebooks/master/network.png" width="500"></img>

## Examples

See [conx-notebooks](https://github.com/Calysto/conx-notebooks/blob/master/00_Index.ipynb) and the [documentation](http://conx.readthedocs.io/en/latest/) for additional examples.

## Installation

See [How To Run Conx](https://github.com/Calysto/conx-notebooks/tree/master/HowToRun#how-to-run-conx)
to see options on running virtual machines, in the cloud, and personal
installation.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.7.7.tar.gz (104.1 kB view details)

Uploaded Source

Built Distribution

conx-3.7.7-py2.py3-none-any.whl (111.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.7.7.tar.gz.

File metadata

  • Download URL: conx-3.7.7.tar.gz
  • Upload date:
  • Size: 104.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.6

File hashes

Hashes for conx-3.7.7.tar.gz
Algorithm Hash digest
SHA256 b06a20004decaf44d90c14a8734f885dc2242cfd3b87108f9429f8627cc13ef2
MD5 bedfc72e14a312cfef3cb09d93b7d521
BLAKE2b-256 b4d112a3bd824cead604031bcbcb76f8094e6c27c72d519202956da9298b37f2

See more details on using hashes here.

File details

Details for the file conx-3.7.7-py2.py3-none-any.whl.

File metadata

  • Download URL: conx-3.7.7-py2.py3-none-any.whl
  • Upload date:
  • Size: 111.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.6

File hashes

Hashes for conx-3.7.7-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 2f7bc9829fb767d6291bc064d5a49d80a20691a62e76fd7d15413888c32ee8f4
MD5 78477152bf9b51a706051a6006f4921b
BLAKE2b-256 06e01cf3c863f79d34072ccf729c7f762aeba39173e2aa512fb6e7747e0b861c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page