Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

Binder
CircleCI
codecov
Documentation Status
PyPI version
PyPI downloads

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytics. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

A network can be specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer. However, any complex network can be constructed using the net.connect() method.

Computing XOR via a target function:

import conx as cx

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.dataset.load(dataset)
net.compile(error='mean_squared_error',
            optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)

Creates dynamic, rendered visualizations like this:

Examples

See conx-notebooks and the documentation for additional examples.

Installation

to see options on running virtual machines, in the cloud, and personal
installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.7.8.tar.gz (105.0 kB view details)

Uploaded Source

Built Distribution

conx-3.7.8-py2.py3-none-any.whl (109.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.7.8.tar.gz.

File metadata

  • Download URL: conx-3.7.8.tar.gz
  • Upload date:
  • Size: 105.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for conx-3.7.8.tar.gz
Algorithm Hash digest
SHA256 45277173d915a8dff342454164d175bb4d07116ab0cdb2cf8c3fda6456c2bdbf
MD5 e002ece0fd4ce990de5da44f52af927d
BLAKE2b-256 5fc3c72307539bee6db03175e99826beb1f4d51de6253be45578f3746217e9a0

See more details on using hashes here.

File details

Details for the file conx-3.7.8-py2.py3-none-any.whl.

File metadata

  • Download URL: conx-3.7.8-py2.py3-none-any.whl
  • Upload date:
  • Size: 109.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for conx-3.7.8-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 512bfde3c5f375ca47175889cccce0d2d443dd3c53f8cda8192c69fd8f46c7cf
MD5 1db6a3dc5510f2028ea119e34d49ec13
BLAKE2b-256 f01513a369c313d8ce9844d03841ddd4f712a3d8e76f0802d7d142ba2d68d801

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page