Skip to main content

On-Ramp to Deep Learning. Built on Keras

Project description

The On-Ramp to Deep Learning

Built in Python 3 on Keras 2.

Binder
CircleCI
codecov
Documentation Status
PyPI version
PyPI downloads

Read the documentation at conx.readthedocs.io

Ask questions on the mailing list: conx-users

Implements Deep Learning neural network algorithms using a simple interface with easy visualizations and useful analytics. Built on top of Keras, which can use either TensorFlow, Theano, or CNTK.

A network can be specified to the constructor by providing sizes. For example, Network(“XOR”, 2, 5, 1) specifies a network named “XOR” with a 2-node input layer, 5-unit hidden layer, and a 1-unit output layer. However, any complex network can be constructed using the net.connect() method.

Computing XOR via a target function:

import conx as cx

dataset = [[[0, 0], [0]],
           [[0, 1], [1]],
           [[1, 0], [1]],
           [[1, 1], [0]]]

net = cx.Network("XOR", 2, 5, 1, activation="sigmoid")
net.dataset.load(dataset)
net.compile(error='mean_squared_error',
            optimizer="sgd", lr=0.3, momentum=0.9)
net.train(2000, report_rate=10, accuracy=1.0)
net.test(show=True)

Creates dynamic, rendered visualizations like this:

Examples

See conx-notebooks and the documentation for additional examples.

Installation

to see options on running virtual machines, in the cloud, and personal
installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conx-3.7.9.tar.gz (105.0 kB view details)

Uploaded Source

Built Distribution

conx-3.7.9-py2.py3-none-any.whl (109.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file conx-3.7.9.tar.gz.

File metadata

  • Download URL: conx-3.7.9.tar.gz
  • Upload date:
  • Size: 105.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for conx-3.7.9.tar.gz
Algorithm Hash digest
SHA256 24eb88ed6e919578c3df8b907190ae004f5eee4576e71b0009e88f303efe7949
MD5 60e529844387d484f150ef1f49bcf5b4
BLAKE2b-256 42e5759467ed87ec327254772c611700174df274937ee22d16e4aa2c4a9e20df

See more details on using hashes here.

File details

Details for the file conx-3.7.9-py2.py3-none-any.whl.

File metadata

  • Download URL: conx-3.7.9-py2.py3-none-any.whl
  • Upload date:
  • Size: 109.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for conx-3.7.9-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 77b6d7ff56d2385b72119b40cae7b832ed7d153977bd9a72c4f487aaacb45cb8
MD5 51e1fdf17a54fa0a0f7fbc8cf5857bea
BLAKE2b-256 3d4ea67da581719b6a7769dfbf2fbaa4bdc2ce5e94939100b97abbca89a83f5a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page