Skip to main content

Python copulae library for dependency modelling

Project description

Copulae

Copulae is a package used to model complex dependency structures. Copulae implements common and popular copula structures to bind multiple univariate streams of data together. All copula implemented are multivariate by default.

Versions

Anaconda Version PyPI version

Continuous Integration

Build Status

Documentation

Documentation Status

Coverage

Coverage Status

Installing

Install and update using pip and on conda.

# conda
conda install -c conda-forge copulae 
# PyPI
pip install -U copulae

Documentation

The documentation is located at https://copulae.readthedocs.io/en/latest/. Please check it out. :)

Simple Usage

from copulae import NormalCopula
import numpy as np

np.random.seed(8)
data = np.random.normal(size=(300, 8))
cop = NormalCopula(8)
cop.fit(data)

cop.random(10)  # simulate random number

# getting parameters
p = cop.params
# cop.params = ...  # you can override parameters too, even after it's fitted!  

# get a summary of the copula. If it's fitted, fit details will be present too
cop.summary()

# overriding parameters, for Elliptical Copulae, you can override the correlation matrix
cop[:] = np.eye(8)  # in this case, this will be equivalent to an Independent Copula

Most of the copulae work roughly the same way. They share pretty much the same API. The major different lies in the way they are parameterized. Read the docs to learn more about them. 😊

Acknowledgements

Most of the code has been implemented by learning from others. Copulas are not the easiest beasts to understand but here are some items that helped me along the way. I would recommend all the works listed below.

Elements of Copula Modeling with R

I referred quite a lot to the textbook when first learning. The authors give a pretty thorough explanation of copula from ground up. They go from describing when you can use copulas for modeling to the different classes of copulas to how to fit them and more.

Blogpost from Thomas Wiecki

This blogpost gives a very gentle introduction to copulas. Before diving into all the complex math you'd find in textbooks, this is probably the best place to start.

Motivations

I started working on the copulae package because I couldn't find a good existing package that does multivariate copula modeling. Presently, I'm building up the package according to my needs at work. If you feel that you'll need some features, you can drop me a message. I'll see how I can schedule it. 😊

TODOS

  • Set up package for pip and conda installation
  • More documentation on usage and post docs on rtd
    • Add sample problems
  • Elliptical Copulas
    • Gaussian (Normal)
    • Student (T)
  • Implement in Archmedeans copulas
    • Clayton
    • Gumbel
    • Frank
    • Joe
    • AMH
  • Implement goodness of fit
  • Implement mixed copulas
  • Implement more solvers
  • Implement convenient graphing functions

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

copulae-0.3.1.tar.gz (95.7 kB view details)

Uploaded Source

Built Distribution

copulae-0.3.1-py3-none-any.whl (94.6 kB view details)

Uploaded Python 3

File details

Details for the file copulae-0.3.1.tar.gz.

File metadata

  • Download URL: copulae-0.3.1.tar.gz
  • Upload date:
  • Size: 95.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for copulae-0.3.1.tar.gz
Algorithm Hash digest
SHA256 f72f25fe854f73aba047c46b20fa5d2fd347caf0987924b1d5029b234bcddeb5
MD5 ea646477b6a14d46596afe702cbeeb11
BLAKE2b-256 13300650ee5971c2e32d7bd68dbaeeeb531b8be36e8b2e23f7f7f2f1efecdce9

See more details on using hashes here.

File details

Details for the file copulae-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: copulae-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 94.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for copulae-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 467478a8f00745492a3fcc10e77e9d783570d2301f265a79d4064b0ae65be074
MD5 d4caa53059ae172cf9a32ef0d3560a29
BLAKE2b-256 91ccf68bac68cd5eedc26cc5aa91a081780ad5dd47a3077f9104038d6e8d7a77

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page