coupled model configuration generation
Project description
CoupledModelDriver
coupledmodeldriver
generates an overlying job submission framework and configuration directories for NEMS-coupled coastal
ocean model ensembles.
It utilizes nemspy
to generate NEMS configuration files, shares common configurations
between runs, and organizes spinup and mesh partition into separate jobs for dependant submission.
Supported models and platforms
- models
- circulation models
- ADCIRC (uses
adcircpy
)
- ADCIRC (uses
- forcings
- ATMESH
- WW3DATA
- circulation models
- platforms
- local
- Slurm
- Hera
- Stampede2
Usage
Example scripts can be found at examples/<platform>
1. generate JSON configuration files
The following code (examples/nems_adcirc/hera_shinnecock_ike_spinup_tidal_atmesh_ww3data.py
) creates a configuration for
coupling (ATMESH + WW3DATA) -> ADCIRC
on Hera, over a small Shinnecock Inlet mesh:
#! /usr/bin/env python
from datetime import datetime, timedelta
from pathlib import Path
from adcircpy.forcing.tides import Tides
from adcircpy.forcing.tides.tides import TidalSource
from adcircpy.forcing.waves.ww3 import WaveWatch3DataForcing
from adcircpy.forcing.winds.atmesh import AtmosphericMeshForcing
from coupledmodeldriver import Platform
from coupledmodeldriver.generate import NEMSADCIRCGenerationScript, NEMSADCIRCRunConfiguration
# paths to compiled `NEMS.x` and `adcprep`
NEMS_EXECUTABLE = '/scratch2/COASTAL/coastal/save/shared/repositories/ADC-WW3-NWM-NEMS/NEMS/exe/NEMS.x'
ADCPREP_EXECUTABLE = '/scratch2/COASTAL/coastal/save/shared/repositories/ADC-WW3-NWM-NEMS/ADCIRC/work/adcprep'
MODULES_FILENAME = '/scratch2/COASTAL/coastal/save/shared/repositories/ADC-WW3-NWM-NEMS/modulefiles/envmodules_intel.hera'
# directory containing input ADCIRC mesh nodes (`fort.14`) and (optionally) mesh values (`fort.13`)
MESH_DIRECTORY = Path('/scratch2/COASTAL/coastal/save/shared/models') / 'meshes' / 'shinnecock' / 'v1.0'
# directory containing input atmospheric mesh forcings (`wind_atm_fin_ch_time_vec.nc`) and WaveWatch III forcings (`ww3.Constant.20151214_sxy_ike_date.nc`)
FORCINGS_DIRECTORY = Path('/scratch2/COASTAL/coastal/save/shared/models') / 'forcings' / 'shinnecock' / 'ike'
# directory to which to write configuration
OUTPUT_DIRECTORY = Path(__file__).parent / Path(__file__).stem
HAMTIDE_DIRECTORY = '/scratch2/COASTAL/coastal/save/shared/models/forcings/tides/hamtide'
TPXO_FILENAME = '/scratch2/COASTAL/coastal/save/shared/models/forcings/tides/h_tpxo9.v1.nc'
platform = Platform.HERA
adcirc_processors = 11
modeled_start_time = datetime(2008, 8, 23)
modeled_duration = timedelta(days=14.5)
modeled_timestep = timedelta(seconds=2)
tidal_spinup_duration = timedelta(days=12.5)
nems_interval = timedelta(hours=1)
job_duration = timedelta(hours=6)
# dictionary defining runs with ADCIRC value perturbations - in this case, a single run with no perturbation
runs = {f'test_case_1': None}
# describe connections between coupled components
nems_connections = ['ATM -> OCN', 'WAV -> OCN']
nems_mediations = None
nems_sequence = [
'ATM -> OCN',
'WAV -> OCN',
'ATM',
'WAV',
'OCN',
]
slurm_email_address = 'example@email.gov'
# initialize `adcircpy` forcing objects
tidal_forcing = Tides(tidal_source=TidalSource.TPXO, resource=TPXO_FILENAME)
tidal_forcing.use_all()
wind_forcing = AtmosphericMeshForcing(
filename=FORCINGS_DIRECTORY / 'wind_atm_fin_ch_time_vec.nc',
nws=17,
interval_seconds=3600,
)
wave_forcing = WaveWatch3DataForcing(
filename=FORCINGS_DIRECTORY / 'ww3.Constant.20151214_sxy_ike_date.nc',
nrs=5,
interval_seconds=3600,
)
forcings = [tidal_forcing, wind_forcing, wave_forcing]
configuration = NEMSADCIRCRunConfiguration(
fort13=MESH_DIRECTORY / 'fort.13',
fort14=MESH_DIRECTORY / 'fort.14',
modeled_start_time=modeled_start_time,
modeled_end_time=modeled_start_time + modeled_duration,
modeled_timestep=modeled_timestep,
nems_interval=nems_interval,
nems_connections=nems_connections,
nems_mediations=nems_mediations,
nems_sequence=nems_sequence,
tidal_spinup_duration=tidal_spinup_duration,
platform=platform,
runs=runs,
forcings=forcings,
adcirc_processors=adcirc_processors,
slurm_partition=None,
slurm_job_duration=job_duration,
slurm_email_address=slurm_email_address,
nems_executable=NEMS_EXECUTABLE,
adcprep_executable=ADCPREP_EXECUTABLE,
source_filename=MODULES_FILENAME,
)
configuration.write_directory(OUTPUT_DIRECTORY, overwrite=False)
generation_script = NEMSADCIRCGenerationScript()
generation_script.write(OUTPUT_DIRECTORY / 'generate_nems_adcirc.py', overwrite=True)
Alternatively, you may use the command-line interface:
initialize_adcirc --platform HERA --mesh-directory ../../../../models/meshes/hsofs/250m/v1.0 --modeled-start-time 20080823 --modeled-duration 14:06:00:00 --modeled-timestep 00:00:02 --nems-interval 01:00:00 --tidal-spinup-duration 12:06:00:00 --tidal-forcing-source TPXO --tidal-forcing-path /scratch2/COASTAL/coastal/save/shared/models/forcings/tides/h_tpxo9.v1.nc --forcings AtmosphericMeshForcing,WaveWatch3DataForcing --directory hera_shinnecock_ike_spinup_tidal_atmesh_ww3data --generate-script
Either method will create the directory hera_shinnecock_ike_spinup_tidal_atmesh_ww3data/
and generate the following JSON
configuration files:
๐ฆ hera_shinnecock_ike_spinup_tidal_atmesh_ww3data/
โฃ โ configure_modeldriver.json
โฃ โ configure_adcirc.json
โฃ โ configure_nems.json
โฃ โ configure_slurm.json
โฃ โ configure_tidal_forcing.json
โฃ โ configure_atmesh.json
โฃ โ configure_ww3data.json
โ โถ generate_nems_adcirc.py
These files contain relevant configuration values for an ADCIRC run. You will likely wish to change these values to alter the resulting run, before generating the actual model configuration.
2. generate model configuration files
Run the following command to read the JSON configuration and generate the ADCIRC run configuration:
generate_adcirc
The resulting configuration will have the following structure:
๐ฆ hera_shinnecock_ike_spinup_tidal_atmesh_ww3data/
โฃ โ configure_modeldriver.json
โฃ โ configure_adcirc.json
โฃ โ configure_nems.json
โฃ โ configure_slurm.json
โฃ โ configure_tidal_forcing.json
โฃ โ configure_atmesh.json
โฃ โ configure_ww3data.json
โฃ โถ generate_nems_adcirc.py
โฃ ๐ coldstart/
โ โฃ ๐ fort.13
โ โฃ ๐ fort.14 -> ../fort.14
โ โฃ ๐ fort.15
โ โฃ ๐ nems.configure -> ../nems.configure.coldstart
โ โฃ ๐ config.rc -> ../config.rc.coldstart
โ โฃ ๐ model_configure -> ../model_configure.coldstart
โ โฃ ๐ adcprep.job -> ../job_adcprep_hera.job
โ โฃ ๐ adcirc.job -> ../job_adcirc_hera.job.coldstart
โ โ ๐ setup.sh -> ../setup.sh.coldstart
โฃ ๐ runs/
โ โ ๐ test_case_1/
โ โฃ ๐ fort.13
โ โฃ ๐ fort.14 -> ../../fort.14
โ โฃ ๐ fort.15
โ โฃ ๐ fort.67.nc -> ../../coldstart/fort.67.nc
โ โฃ ๐ nems.configure -> ../../nems.configure.hotstart
โ โฃ ๐ config.rc -> ../../config.rc.hotstart
โ โฃ ๐ model_configure -> ../../model_configure.hotstart
โ โฃ ๐ adcprep.job -> ../../job_adcprep_hera.job
โ โฃ ๐ adcirc.job -> ../../job_adcirc_hera.job.hotstart
โ โ ๐ setup.sh -> ../../setup.sh.hotstart
โฃ ๐ fort.14
โฃ ๐ nems.configure.coldstart
โฃ ๐ nems.configure.hotstart
โฃ ๐ config.rc.coldstart
โฃ ๐ config.rc.hotstart
โฃ ๐ model_configure.coldstart
โฃ ๐ model_configure.hotstart
โฃ ๐ job_adcprep_hera.job
โฃ ๐ job_adcirc_hera.job.coldstart
โฃ ๐ job_adcirc_hera.job.hotstart
โฃ ๐ setup.sh.coldstart
โฃ ๐ setup.sh.hotstart
โฃ ๐ cleanup.sh
โ โถ run_hera.sh
3. run the model
Run the following to submit the model run to the Slurm job queue:
sh run_hera.sh
The queue will have the following jobs added:
JOBID NAME CPUS NODE DEPENDENCY SUBMIT_TIME START_TIME END_TIME
16368044 ADCIRC_MESH_PARTITION 1 1 (null) 2021-02-18T19:29:17 N/A N/A
16368045 ADCIRC_COLDSTART 11 1 afterany:16368044(unfulfilled) 2021-02-18T19:29:17 N/A N/A
16368046 ADCIRC_MESH_PARTITION 1 1 afterany:16368045(unfulfilled) 2021-02-18T19:29:17 N/A N/A
16368047 ADCIRC_HOTSTART 13 1 afterany:16368046(unfulfilled) 2021-02-18T19:29:17 N/A N/A
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for coupledmodeldriver-1.2.9-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f846fac994c08e58cd79fc521a7dd393afdee93214f1a4cd4b3f69fca51d429 |
|
MD5 | 49efd3236c90a11fcb6e89118ea54393 |
|
BLAKE2b-256 | d854256bcb0e1fecb4974628a170be67cd1c89fda6390d64db70e329347c125b |