Skip to main content

It makes combinations covering pairs for pairwise testing.

Project description

https://badge.fury.io/py/covertable.svg https://circleci.com/gh/walkframe/covertable.svg?style=shield https://codecov.io/gh/walkframe/covertable/branch/master/graph/badge.svg https://img.shields.io/badge/code%20style-black-000000.svg https://img.shields.io/badge/License-Apache%202.0-blue.svg

Requirements

  • Python: 3.3 or later.

    • Tested with 3.7

Installation

$ pip install covertable

Usage

Just import covertable and call make function.

>>> from covertable import make, sorters, criteria

>>> machine_list = ['iphone', 'pixel']
>>> os_list = ['ios', 'android']
>>> browser_list = ['FireFox', 'Chrome', 'Safari']
>>> # list input and output
>>> make(
...     [machine_list, os_list, browser_list],  # list factors
...     length=2,  # default: 2
...     sorter=sorters.random,  # default: sorters.hash
...     criterion=criteria.simple,  # default: criteria.greedy
...     seed=100,  # default: ''
...     pre_filter=lambda row: not(row[1] == 'android' and row[0] != 'pixel') and not(row[1] == 'ios' and row[0] != 'iphone'),  # default: None
... )
[
  ['pixel', 'android', 'Safari'],
  ['iphone', 'ios', 'Chrome'],
  ['iphone', 'ios', 'Safari'],
  ['pixel', 'android', 'Chrome'],
  ['pixel', 'android', 'FireFox'],
  ['iphone', 'ios', 'FireFox']
]


>>> # dict input and output
>>> make(
...     {'machine': machine_list, 'os': os_list, 'browser': browser_list},  # dict factors
...     length=2,  # default: 2
...     tolerance=3,  # default: 0
...     post_filter=lambda row: not(row['os'] == 'android' and row['machine'] != 'pixel') and not(row['os'] == 'ios' and row['machine'] != 'iphone'),  # default: None
... )
[
  {'machine': 'pixel', 'browser': 'Chrome', 'os': 'android'},
  {'machine': 'pixel', 'browser': 'FireFox', 'os': 'android'},
  {'machine': 'iphone', 'os': 'ios', 'browser': 'Chrome'},
  {'os': 'ios', 'browser': 'FireFox', 'machine': 'iphone'}
]

Options

covertable.make function has options as keyword argument.

All options are omittable.

length

It means length of pair to meet. (default: 2)

The more it increases, the more number of combinations increases.

sorter

Combinations depend on the order of spreading all over the rows.

You can choice a sorter from the following:

sorters.random:

This makes different combinations everytime. (fastest)

sorters.hash:

This makes combinations depending on hash of the pair and seed. (default)

  • It receives seed and useCache options.

    • seed option decides the order of storing from unstored pairs, therefore it outputs the same result every time when number of factors and seed are the same.

    • useCache option decide if using cache of hash or not. (default: true)

      • It is around 10% faster than setting useCache off.

criterion

criteria.simple:

This extracts any pairs that can be stored into the processing row.

criteria.greedy:

This attempts to make most efficient combinations. (default)

  • These combinations are not always shorter than simple criterion.

  • It receives tolerance option.

pre_filter

This means a function to filter beforehand.

It receives an argument row as object type.

When the function returns false, the row combination will not registered.

  • If factors type is Array, you should an index at the subscript like row => row[1] < 6.

  • IF factors type is Object, you should a key at the subscript like row => row.month < 6 or row => row[‘month’] < 6

post_filter

This means a function to filter later.

Usage is the same as preFilter, only the difference is the timing that it is called. It will delete rows not matched this function at the last.

Development

# preparation
$ python3 -m venv venv
$ source venv/bin/activate
(venv) $ pip install -r dev_requirements.txt

# testing
(venv) $ tox # -e py37 -e cov -e black

Publish

(venv) $ python setup.py sdist bdist_wheel
(venv) $ twine upload --repository pypi dist/*

More info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

covertable-2.0.0.tar.gz (5.7 kB view details)

Uploaded Source

Built Distribution

covertable-2.0.0-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file covertable-2.0.0.tar.gz.

File metadata

  • Download URL: covertable-2.0.0.tar.gz
  • Upload date:
  • Size: 5.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.3

File hashes

Hashes for covertable-2.0.0.tar.gz
Algorithm Hash digest
SHA256 ad4f9b08d81f146df9d0442b3c3977c293b214f6a1dfac259a8060062b23294c
MD5 b486635e979b33866bd35a69fee3094e
BLAKE2b-256 f372067ae80836e48fdc44504edae84c690b33d270b1c52f32cb5af2b8c3ded1

See more details on using hashes here.

File details

Details for the file covertable-2.0.0-py3-none-any.whl.

File metadata

  • Download URL: covertable-2.0.0-py3-none-any.whl
  • Upload date:
  • Size: 7.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.3

File hashes

Hashes for covertable-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 da887e54450327dac00f561657bf07e9f293930150a70759d03f867bfc58351e
MD5 be02513bb848379c7a28f866270f547e
BLAKE2b-256 3c45b11afe163e99bbb5ee258dd8b2b4aaf46a9e58d1158374d782c2504cbb10

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page