Skip to main content

Module with C functions. No precise purpose yet.

Project description

https://github.com/sdpython/cpyquickhelper/blob/master/_doc/sphinxdoc/source/phdoc_static/project_ico.png?raw=true

cpyquickhelper: python + C++ in different ways

Build status Build Status Windows https://circleci.com/gh/sdpython/cpyquickhelper/tree/master.svg?style=svg https://dev.azure.com/xavierdupre3/cpyquickhelper/_apis/build/status/sdpython.cpyquickhelper https://badge.fury.io/py/cpyquickhelper.svg MIT License Requirements Status https://codecov.io/github/sdpython/cpyquickhelper/coverage.svg?branch=master GitHub Issues Notebook Coverage size

cpyquickhelper is a template to create a module with C functions in different ways. It implements function measure_time:

from cpyquickhelper.numbers import measure_time
from math import cos

res = measure_time("cos(x)", context=dict(cos=cos, x=5.))
print(res)
{'average': 3.909366205334663e-06, 'deviation': 6.238702219064397e-07,
 'min_exec': 3.635883331298828e-06, 'max_exec': 5.776062607765198e-06,
 'repeat': 10, 'number': 50, 'context_size': 240}

On Windows, the following exception might happen:

LINK : fatal error LNK1158: impossible d'exécuter 'rc.exe'

Which might be resolved with the following line before building it:

set PATH=%PATH%;C:\Program Files (x86)\Windows Kits\10\bin\10.0.16299.0\x64

Links:

History

current - 2020-09-02 - 0.00Mb

  • 20: Fixes build on ubuntu 16.04 (2020-09-02)

  • 19: PandasDtype fails with numpy 1.19 (2020-08-07)

0.2.303 - 2020-05-16 - 0.43Mb

0.2.302 - 2020-05-16 - 0.69Mb

  • 18: Returns the results as well when capturing the standard output (2020-05-16)

0.2.299 - 2020-05-08 - 0.45Mb

  • 17: Add a simple C++ implementation for gemm. (2020-01-17)

  • 15: enable openmp on mac (2020-01-17)

  • 16: Add an example of an agnostic container (no data in python containers) (2019-08-29)

  • 14: link with openmp, implement dot product with it (2019-07-21)

0.2.229 - 2019-06-04 - 0.14Mb

0.2.226 - 2019-05-28 - 0.14Mb

  • 13: remove folder src (2019-05-23)

  • 7: add an example with cython (2019-04-04)

  • 12: implements a benchmark to measure a sum of floats with float and double accumulator (2019-03-20)

0.1.187 - 2019-02-26 - 0.17Mb

  • 11: add parameter div_by_number to measure_time (2019-02-26)

  • 10: fix binary location in the setup (2019-02-16)

  • 5: implement a new pandas column type based on a C++ array type (2019-02-02)

  • 9: add benchmark for branching (2019-01-17)

  • 1: [REMOVED] prepare an example with C# (2018-08-05)

  • 6: implements an ExtensionArray from pandas with a C++ type (2018-08-03)

  • 4: implements a series with WeightedDouble (2018-08-03)

  • 3: add an example based on pybind11 (2018-08-02)

  • 2: add history (2018-04-01)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cpyquickhelper-0.2.330.tar.gz (149.5 kB view details)

Uploaded Source

Built Distributions

cpyquickhelper-0.2.330-cp38-cp38-win_amd64.whl (473.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

cpyquickhelper-0.2.330-cp37-cp37m-win_amd64.whl (450.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

File details

Details for the file cpyquickhelper-0.2.330.tar.gz.

File metadata

  • Download URL: cpyquickhelper-0.2.330.tar.gz
  • Upload date:
  • Size: 149.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.7

File hashes

Hashes for cpyquickhelper-0.2.330.tar.gz
Algorithm Hash digest
SHA256 10c06e591a6ccdbca0860d729cc9ad3c0beaa0252fd027b93cd95b72e262f78c
MD5 0510333d7f6260f44762496693f2a61c
BLAKE2b-256 cf47f830e43238ddf7a5c48877c723b73f11a544c48f6aa7631ab0fb5265309a

See more details on using hashes here.

File details

Details for the file cpyquickhelper-0.2.330-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: cpyquickhelper-0.2.330-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 473.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.2

File hashes

Hashes for cpyquickhelper-0.2.330-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 055355803473788ce14b6848faf6475c294d5d15c5ed52da5f70e286c858723f
MD5 27fd4ba71f6ecdfea66645536a5e0895
BLAKE2b-256 ee3972e4196916c6519f787c8e820a4f43a5052696de1b0fa48c28a4056d7203

See more details on using hashes here.

File details

Details for the file cpyquickhelper-0.2.330-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for cpyquickhelper-0.2.330-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5de93a4611780891243ab5d5ecad0cdfe02f6cfb8113eb00cd1391e8c9e07b10
MD5 bbbed44cdf08b1cd93a36dd8ef305698
BLAKE2b-256 75cfe899adae8fcf656fd9128a576c3714b2a308e13d44135913fb7f2cba21d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page