Skip to main content

A simple query builder for Amazon Cloudsearch structured query parser.

Project description

travis coveralls.io downloads latest version license requirements status

Features

Caution

  • At the moment, this library is compatible only to Structured Search Syntax .

  • It does not have any plans corresponding to the other query parser(lucene, dismax, simple).

  • If you want the lucene query builder, it’s a good idea is to use the following library.

  • This library does not handle to generate queries that are not related to Structured Search Syntax. Ex) size, facets …

Set up

Make environment with pip:

$ pip install csquery

Usage

and

Syntax: (and boost=N EXPRESSION EXPRESSION … EXPRESSIONn)

from csquery.structured import and_, field

q = and_(title='star', actors='Harrison Ford', year=('', 2000))
q() #=> (and title:'star' actors:'Harrison Ford' year:{,2000])

# with option
q = and_({'title': 'star'}, {'title': 'star2'}, boost=2)
q() #=> (and boost=2 title:'star' title:'star2')

# another writing
and_({'title': 'star'}, {'actors': 'Harrison Ford'}, {'year': ('', 2000)})
and_(field('star', 'title'), field('Harrison Ford', 'actors'), field(('', 2000), 'year'))

or

Syntax: (or boost=N EXPRESSION1 EXPRESSION2 … EXPRESSIONn)

from csquery.structured import or_, field

q = or_(title='star', actors='Harrison Ford', year=('', 2000))
q() #=> (or title:'star' actors:'Harrison Ford' year:{,2000])

# with option
q = or_({'title': 'star'}, {'title': 'star2'}, boost=2)
q() #=> (or boost=2 title:'star' title:'star2')

not

Syntax: (not boost=N EXPRESSION)

from csquery.structured import not_, and_

q = not_(and_(actors='Harrison Ford', year=('', 2010)))
q() #=> (not (and actors:'Harrison Ford' year:{,2010]))

# with option
q = not_(and_(actors='Harrison Ford', year=('', 2010)), boost=2)
q() #=> (not boost=2 (and actors:'Harrison Ford' year:{,2010]))

near

Syntax: (near field=FIELD distance=N boost=N ‘STRING’)

from csquery.structured import near

q = near('teenage vampire', boost=2, field='plot', distance=2)
q() #=> (near field=plot distance=2 boost=2 'teenage vampire')

phrase

Syntax: (phrase field=FIELD boost=N ‘STRING’)

from csquery.structured import phrase

q = phrase('star', boost=2, field='title')
q() #=> (phrase field=title boost=2 'star')

prefix

Syntax: (prefix field=FIELD boost=N ‘STRING’)

from csquery.structured import prefix

q = prefix('star', boost=2, field='title')
q() #=> (prefix field=title boost=2 'star')

range

Syntax: (range field=FIELD boost=N RANGE)

from csquery.structured import range_

q = range_((1990, 2000))
q() #=> (range [1990,2000])
q = range_((None, 2000))
q() #=> (range {,2000])
q = range_((1990,))
q() #=> (range [1990,})

# with opition
q = range_((1990, 2000), field='date', boost=2)
q() #=> (range field=date boost=2 [1990,2000])

# another writing
q = range_('[1990,2000]')
q() #=> (range [1990,2000])

q = range_(('', 2000))
q() #=> (range {,2000])
q = range_('{,2000]')
q() #=> (range {,2000])

q = range_((1990, None))
q() #=> (range [1990,})
q = range_((1990, ''))
q() #=> (range [1990,})
q = range_('[1990,}')
q() #=> (range [1990,})

term

Syntax: (term field=FIELD boost=N ‘STRING’|VALUE)

from csquery.structured import term

q = term(2000, field='year', boost=2)
q() #=> (term field=year boost=2 2000)

q = term('star', field='title', boost=2)
q() #=> (term field=title boost=2 'star')

Complex query sample

from csquery.structured import and_, or_, not_, term

q = and_(
    not_('test', field='genres'),
    or_(
        term('star', field='title', boost=2),
        term('star', field='plot')
    )
)
q() #=> (and (not field=genres 'test') (or (term field=title boost=2 'star') (term field=plot 'star')))

Using with boto

http://boto.readthedocs.org/en/latest/ref/cloudsearch2.html

from csquery.structured import and_
from boto.cloudsearch2.layer2 import Layer2

conn = Layer2(
    region='ap-northeast-1',
    aws_access_key_id=[AWS ACCESSS KEY ID],
    aws_secret_access_key=[AWS SECRET KEY],
)
domain = conn.lookup('search_domain_name')
search_service = domain.get_search_service()

q = and_(title='star', actors='Harrison Ford', year=('', 2000))
result = search_service.search(q=q(), parser='structured')

Python Support

  • Python 2.7, 3,3, 3.4 or later.

License

  • Source code of this library Licensed under the MIT License.

See the LICENSE.rst file for specific terms.

Authors

  • tell-k <ffk2005 at gmail.com>

History

0.1.0(Jun 8, 2015)

  • First release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

csquery-0.1.0.tar.gz (7.8 kB view details)

Uploaded Source

Built Distribution

csquery-0.1.0-py2.py3-none-any.whl (7.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file csquery-0.1.0.tar.gz.

File metadata

  • Download URL: csquery-0.1.0.tar.gz
  • Upload date:
  • Size: 7.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for csquery-0.1.0.tar.gz
Algorithm Hash digest
SHA256 f48ac2838de25ab07a22b0fe750a7ed28a16d236269838151a30486cca233490
MD5 587bcf9415c234ce2927b0c50e061ae6
BLAKE2b-256 6b87924fde3c1d6c532b32fad861dc6311f2e5da0f02f4fb21368cf018eb894d

See more details on using hashes here.

File details

Details for the file csquery-0.1.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for csquery-0.1.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 df764c08dc8026b0ece370550749854fe3f2b99207767a3805e9b21f92fd6480
MD5 711b2677b4457da8d74b6af2d736a1b5
BLAKE2b-256 0c5f3c7220968eede3202faaef1b56ed10843aff4c2f01378d9b4ef926d84f62

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page