Skip to main content

A simple query builder for Amazon Cloudsearch structured query parser.

Project description

A simple query builder for Amazon Cloudsearch Structured query parser.

travis coveralls.io downloads latest version license requirements status

Features

Caution

  • At the moment, this library is compatible only to Structured Search Syntax .

  • It does not have any plans corresponding to the other query parser(lucene, dismax, simple).

  • If you want the lucene query builder, it’s a good idea is to use the following library.

  • This library does not handle to generate queries that are not related to Structured Search Syntax. Ex) size, facets …

Set up

Make environment with pip:

$ pip install csquery

Usage

and

Syntax: (and boost=N EXPRESSION EXPRESSION … EXPRESSIONn)

from csquery.structured import and_, field

q = and_(title='star', actors='Harrison Ford', year=('', 2000))
q() #=> (and title:'star' actors:'Harrison Ford' year:{,2000])

# with option
q = and_({'title': 'star'}, {'title': 'star2'}, boost=2)
q() #=> (and boost=2 title:'star' title:'star2')

# another writing
and_({'title': 'star'}, {'actors': 'Harrison Ford'}, {'year': ('', 2000)})
and_(field('star', 'title'), field('Harrison Ford', 'actors'), field(('', 2000), 'year'))

or

Syntax: (or boost=N EXPRESSION1 EXPRESSION2 … EXPRESSIONn)

from csquery.structured import or_, field

q = or_(title='star', actors='Harrison Ford', year=('', 2000))
q() #=> (or title:'star' actors:'Harrison Ford' year:{,2000])

# with option
q = or_({'title': 'star'}, {'title': 'star2'}, boost=2)
q() #=> (or boost=2 title:'star' title:'star2')

not

Syntax: (not boost=N EXPRESSION)

from csquery.structured import not_, and_

q = not_(and_(actors='Harrison Ford', year=('', 2010)))
q() #=> (not (and actors:'Harrison Ford' year:{,2010]))

# with option
q = not_(and_(actors='Harrison Ford', year=('', 2010)), boost=2)
q() #=> (not boost=2 (and actors:'Harrison Ford' year:{,2010]))

near

Syntax: (near field=FIELD distance=N boost=N ‘STRING’)

from csquery.structured import near

q = near('teenage vampire', boost=2, field='plot', distance=2)
q() #=> (near field=plot distance=2 boost=2 'teenage vampire')

phrase

Syntax: (phrase field=FIELD boost=N ‘STRING’)

from csquery.structured import phrase

q = phrase('star', boost=2, field='title')
q() #=> (phrase field=title boost=2 'star')

prefix

Syntax: (prefix field=FIELD boost=N ‘STRING’)

from csquery.structured import prefix

q = prefix('star', boost=2, field='title')
q() #=> (prefix field=title boost=2 'star')

range

Syntax: (range field=FIELD boost=N RANGE)

from csquery.structured import range_

q = range_((1990, 2000))
q() #=> (range [1990,2000])
q = range_((None, 2000))
q() #=> (range {,2000])
q = range_((1990,))
q() #=> (range [1990,})

# with opition
q = range_((1990, 2000), field='date', boost=2)
q() #=> (range field=date boost=2 [1990,2000])

# another writing
q = range_('[1990,2000]')
q() #=> (range [1990,2000])

q = range_(('', 2000))
q() #=> (range {,2000])
q = range_('{,2000]')
q() #=> (range {,2000])

q = range_((1990, None))
q() #=> (range [1990,})
q = range_((1990, ''))
q() #=> (range [1990,})
q = range_('[1990,}')
q() #=> (range [1990,})

term

Syntax: (term field=FIELD boost=N ‘STRING’|VALUE)

from csquery.structured import term

q = term(2000, field='year', boost=2)
q() #=> (term field=year boost=2 2000)

q = term('star', field='title', boost=2)
q() #=> (term field=title boost=2 'star')

Complex query sample

from csquery.structured import and_, or_, not_, term

q = and_(
    not_('test', field='genres'),
    or_(
        term('star', field='title', boost=2),
        term('star', field='plot')
    )
)
q() #=> (and (not field=genres 'test') (or (term field=title boost=2 'star') (term field=plot 'star')))

Using with boto

http://boto.readthedocs.org/en/latest/ref/cloudsearch2.html

from csquery.structured import and_
from boto.cloudsearch2.layer2 import Layer2

conn = Layer2(
    region='ap-northeast-1',
    aws_access_key_id=[AWS ACCESSS KEY ID],
    aws_secret_access_key=[AWS SECRET KEY],
)
domain = conn.lookup('search_domain_name')
search_service = domain.get_search_service()

q = and_(title='star', actors='Harrison Ford', year=('', 2000))
result = search_service.search(q=q(), parser='structured')

Python Support

  • Python 2.7, 3,3, 3.4 or later.

License

  • Source code of this library Licensed under the MIT License.

See the LICENSE.rst file for specific terms.

Authors

  • tell-k <ffk2005 at gmail.com>

Contributors

thanks.

  • podhmo

History

0.1.1(Nov 6, 2015)

  • Fixed bug. #1.

0.1.0(Jun 8, 2015)

  • First release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

csquery-0.1.1.tar.gz (8.3 kB view details)

Uploaded Source

Built Distribution

csquery-0.1.1-py2.py3-none-any.whl (9.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file csquery-0.1.1.tar.gz.

File metadata

  • Download URL: csquery-0.1.1.tar.gz
  • Upload date:
  • Size: 8.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for csquery-0.1.1.tar.gz
Algorithm Hash digest
SHA256 05fddec1d610b9f5c3bc05a93085b266958cc26efd20921a7f126a409b170379
MD5 60531a140ebf97ed39cb67b115ebee32
BLAKE2b-256 e32343d5bd0a66183c2b4e1809a5c9149db712453fd76b4dc89e52a2602ab9c6

See more details on using hashes here.

File details

Details for the file csquery-0.1.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for csquery-0.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 3a8090def29dbb97cc6d6dda58a6554f5ae08368b4ff96ea7be6dd2630da6153
MD5 f8bfcdcb9c2941e47d4b8d8615ae782d
BLAKE2b-256 dc055a59e3a3da713b3527bef2988525489d63d0916e945d7fa3e4020ab054d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page