Skip to main content

cuCIM - an extensible toolkit designed to provide GPU accelerated I/O, computer vision & image processing primitives for N-Dimensional images with a focus on biomedical imaging.

Project description

 cuCIM

RAPIDS cuCIM is an open-source, accelerated computer vision and image processing software library for multidimensional images used in biomedical, geospatial, material and life science, and remote sensing use cases.

cuCIM offers:

  • Enhanced Image Processing Capabilities for large and n-dimensional tag image file format (TIFF) files
  • Accelerated performance through Graphics Processing Unit (GPU)-based image processing and computer vision primitives
  • A Straightforward Pythonic Interface with Matching Application Programming Interface (API) for Openslide

cuCIM supports the following formats:

  • Aperio ScanScope Virtual Slide (SVS)
  • Philips TIFF
  • Generic Tiled, Multi-resolution RGB TIFF files with the following compression schemes:
    • No Compression
    • JPEG
    • JPEG2000
    • Lempel-Ziv-Welch (LZW)
    • Deflate

NOTE: For the latest stable README.md ensure you are on the main branch.

Developer Page

Blogs

Webinars

Documentation

Release notes are available on our wiki page.

Install cuCIM

Conda

Conda (stable)

conda create -n cucim -c rapidsai -c conda-forge cucim cuda-version=`<CUDA version>`

<CUDA version> should be 11.2+ (e.g., 11.2, 12.0, etc.)

Conda (nightlies)

conda create -n cucim -c rapidsai-nightly -c conda-forge cucim cuda-version=`<CUDA version>`

<CUDA version> should be 11.2+ (e.g., 11.2, 12.0, etc.)

PyPI

Install for CUDA 12:

pip install cucim-cu12

Alternatively install for CUDA 11:

pip install cucim-cu11

Notebooks

Please check out our Welcome notebook (NBViewer)

Downloading sample images

To download images used in the notebooks, please execute the following commands from the repository root folder to copy sample input images into notebooks/input folder:

(You will need Docker installed in your system)

./run download_testdata

or

mkdir -p notebooks/input
tmp_id=$(docker create gigony/svs-testdata:little-big)
docker cp $tmp_id:/input notebooks
docker rm -v ${tmp_id}

Build/Install from Source

See build instructions.

Contributing Guide

Contributions to cuCIM are more than welcome! Please review the CONTRIBUTING.md file for information on how to contribute code and issues to the project.

Acknowledgments

Without awesome third-party open source software, this project wouldn't exist.

Please find LICENSE-3rdparty.md to see which third-party open source software is used in this project.

License

Apache-2.0 License (see LICENSE file).

Copyright (c) 2020-2022, NVIDIA CORPORATION.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cucim_cu11-24.10.0.tar.gz (3.2 kB view details)

Uploaded Source

Built Distributions

cucim_cu11-24.10.0-cp312-cp312-manylinux_2_28_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

cucim_cu11-24.10.0-cp312-cp312-manylinux_2_28_aarch64.whl (5.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

cucim_cu11-24.10.0-cp311-cp311-manylinux_2_28_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

cucim_cu11-24.10.0-cp311-cp311-manylinux_2_28_aarch64.whl (5.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

cucim_cu11-24.10.0-cp310-cp310-manylinux_2_28_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

cucim_cu11-24.10.0-cp310-cp310-manylinux_2_28_aarch64.whl (5.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

File details

Details for the file cucim_cu11-24.10.0.tar.gz.

File metadata

  • Download URL: cucim_cu11-24.10.0.tar.gz
  • Upload date:
  • Size: 3.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for cucim_cu11-24.10.0.tar.gz
Algorithm Hash digest
SHA256 4ff6a682ba240a5d1591fad3e306c206bc1980f95a5c16c2050b0b2b93ec601a
MD5 82129dd34a34002afeedc9feeaba7132
BLAKE2b-256 4d82914d98016e19e7420791a8f743b8e6f5057bbe87b14663d76d1193da5c46

See more details on using hashes here.

File details

Details for the file cucim_cu11-24.10.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cucim_cu11-24.10.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7881f1a0f9f2830ec5dc82ad65076742cee5265108be8b465852a7484824a258
MD5 97c4823fdb35004ba8d602ff7220d858
BLAKE2b-256 91174b4e84b2fdb7611e002033f9a1a8bb753e58ff8e2862c4330f00b2b6a906

See more details on using hashes here.

File details

Details for the file cucim_cu11-24.10.0-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cucim_cu11-24.10.0-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f36fa9708c030837d892a48463ac5570a136a41800d5ba306cceda011c4e7923
MD5 038897a5cec09e7136f8edd3fc493c2d
BLAKE2b-256 963866d2f08288280bfc440ee73c444620181a3678b618f6a50afeec63da65d1

See more details on using hashes here.

File details

Details for the file cucim_cu11-24.10.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cucim_cu11-24.10.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b147d643e2418bfb454458ae4481c49c75fe700575984227bac1000389aaa267
MD5 2fdec2269e6709786f545226f3bdf24e
BLAKE2b-256 214f52f60b50a0c9f04d1afebc83664592f31426632fc88dd880b7ebfa520ff1

See more details on using hashes here.

File details

Details for the file cucim_cu11-24.10.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cucim_cu11-24.10.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4298ad123621be7d6bbee0b748f95ce8675b2301ac55f29ba6395bd9ef3e506a
MD5 9c143ddb1696ddee654d27e75da2aebe
BLAKE2b-256 0ae36ac44a0ffb08f1ce5ba5f319439cc7bb2f3794233dcc1cca79e521bb72fa

See more details on using hashes here.

File details

Details for the file cucim_cu11-24.10.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cucim_cu11-24.10.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e571b6637caed5e790f7a7d47e09abb62aa0c53544d15d705ab29370b081eb22
MD5 7f028e1cae5f24e865dbc59f2bf229cf
BLAKE2b-256 95df04d2ae1c3ac87bfb9428d0001c4c1556226e2f559feb2a3e8ee44df3246a

See more details on using hashes here.

File details

Details for the file cucim_cu11-24.10.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cucim_cu11-24.10.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c11fce3e7e171c8fd615d3c5d45f6679fc458a6709e8512d9220e55c43a0f27b
MD5 99f489e3650ab5c7a3a238e49b83fb07
BLAKE2b-256 6aba5f324cd8c0a55fb15385795f94ccf18a5853a2a5945f077e24364017b35c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page