Skip to main content

cuCIM - an extensible toolkit designed to provide GPU accelerated I/O, computer vision & image processing primitives for N-Dimensional images with a focus on biomedical imaging.

Project description

 cuCIM

RAPIDS cuCIM is an open-source, accelerated computer vision and image processing software library for multidimensional images used in biomedical, geospatial, material and life science, and remote sensing use cases.

cuCIM offers:

  • Enhanced Image Processing Capabilities for large and n-dimensional tag image file format (TIFF) files
  • Accelerated performance through Graphics Processing Unit (GPU)-based image processing and computer vision primitives
  • A Straightforward Pythonic Interface with Matching Application Programming Interface (API) for Openslide

cuCIM supports the following formats:

  • Aperio ScanScope Virtual Slide (SVS)
  • Philips TIFF
  • Generic Tiled, Multi-resolution RGB TIFF files with the following compression schemes:
    • No Compression
    • JPEG
    • JPEG2000
    • Lempel-Ziv-Welch (LZW)
    • Deflate

NOTE: For the latest stable README.md ensure you are on the main branch.

Developer Page

Blogs

Webinars

Documentation

Release notes are available on our wiki page.

Install cuCIM

Conda

Conda (stable)

conda create -n cucim -c rapidsai -c conda-forge cucim cuda-version=`<CUDA version>`

<CUDA version> should be 11.2+ (e.g., 11.2, 12.0, etc.)

Conda (nightlies)

conda create -n cucim -c rapidsai-nightly -c conda-forge cucim cuda-version=`<CUDA version>`

<CUDA version> should be 11.2+ (e.g., 11.2, 12.0, etc.)

PyPI

Install for CUDA 12:

pip install cucim-cu12

Alternatively install for CUDA 11:

pip install cucim-cu11

Notebooks

Please check out our Welcome notebook (NBViewer)

Downloading sample images

To download images used in the notebooks, please execute the following commands from the repository root folder to copy sample input images into notebooks/input folder:

(You will need Docker installed in your system)

./run download_testdata

or

mkdir -p notebooks/input
tmp_id=$(docker create gigony/svs-testdata:little-big)
docker cp $tmp_id:/input notebooks
docker rm -v ${tmp_id}

Build/Install from Source

See build instructions.

Contributing Guide

Contributions to cuCIM are more than welcome! Please review the CONTRIBUTING.md file for information on how to contribute code and issues to the project.

Acknowledgments

Without awesome third-party open source software, this project wouldn't exist.

Please find LICENSE-3rdparty.md to see which third-party open source software is used in this project.

License

Apache-2.0 License (see LICENSE file).

Copyright (c) 2020-2022, NVIDIA CORPORATION.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cucim_cu11-24.8.0.tar.gz (3.2 kB view details)

Uploaded Source

Built Distributions

cucim_cu11-24.8.0-cp311-cp311-manylinux_2_28_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

cucim_cu11-24.8.0-cp311-cp311-manylinux_2_28_aarch64.whl (5.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

cucim_cu11-24.8.0-cp310-cp310-manylinux_2_28_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

cucim_cu11-24.8.0-cp310-cp310-manylinux_2_28_aarch64.whl (5.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

cucim_cu11-24.8.0-cp39-cp39-manylinux_2_28_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

cucim_cu11-24.8.0-cp39-cp39-manylinux_2_28_aarch64.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

File details

Details for the file cucim_cu11-24.8.0.tar.gz.

File metadata

  • Download URL: cucim_cu11-24.8.0.tar.gz
  • Upload date:
  • Size: 3.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for cucim_cu11-24.8.0.tar.gz
Algorithm Hash digest
SHA256 3e790ee454f7984b188d2e68a369c86fe5f0a6e2ffa67ac851cbae8830c3ae3e
MD5 8e5a308f299cf53f11de8641ed7c9c55
BLAKE2b-256 61549f279bb9819f61561f186b58adc32e84f9fe7eb4cb84ab3163452b7389e8

See more details on using hashes here.

Provenance

File details

Details for the file cucim_cu11-24.8.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cucim_cu11-24.8.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 005acce3edd21bed23775ea6ecaf035e6720ac8da7d6d25bef877d83dd0558bf
MD5 c3abf5ce257418705a13bd3c45a7b57e
BLAKE2b-256 c4544d742637ee7410e51f0155d27a9bcf35f6bc6189c47f4e8b173dcc4e04f2

See more details on using hashes here.

Provenance

File details

Details for the file cucim_cu11-24.8.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cucim_cu11-24.8.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a9ec1da484ab4397ccdc0e3e7e7393d47f1f6079fc4079e49a7f56c8d0a1f786
MD5 d535d9229c37b44fa997354541717e44
BLAKE2b-256 11bd509f374958912681e613ff554b8e2a3d2da3c8d2dc330c6a81f98b2b92f9

See more details on using hashes here.

Provenance

File details

Details for the file cucim_cu11-24.8.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cucim_cu11-24.8.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 71b9ced37ec42d4240a45c57eef6ce3ded25b53ba1b602ea3c56e2890dbed17a
MD5 697c44b6b6beef4567faf8adfa9dda71
BLAKE2b-256 72368b43896cbb6447d4dca1f097930bd5e6542ac53f0eee9e969cdfadf52369

See more details on using hashes here.

Provenance

File details

Details for the file cucim_cu11-24.8.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cucim_cu11-24.8.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 546344872b2a832ca1c6b310b2e6a21c83022018b8eb048ded3af4cc5891c96f
MD5 3b424336eb13d0cb8d76e112ac763ee2
BLAKE2b-256 f0a2b548324276135c7ce3db22b293953ac31f2cfcf1484b0f136fa235f5b3ec

See more details on using hashes here.

Provenance

File details

Details for the file cucim_cu11-24.8.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cucim_cu11-24.8.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b4ed6fb5c8d277a3c3c6b2612322eb2b48de150a9d3754da4f864a6e4fff84d9
MD5 d9f6382e1bbaf326e5016439d1a3e069
BLAKE2b-256 c7486ffe274ceba0449c8997dd48eb526cfb7714bcbce9c1b2218eb8deafc36e

See more details on using hashes here.

Provenance

File details

Details for the file cucim_cu11-24.8.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cucim_cu11-24.8.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e1d508560e533bc8ccf38b5f2527d414ee997be9d46656e3abdd38fbf5cbc313
MD5 c8461c4c058b97bdbb6b661043f00063
BLAKE2b-256 f470abf16f44e2ffc8b5e19954c2ee799c10de5bc23febec73f53c0a9f956982

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page