Skip to main content

cuCIM - an extensible toolkit designed to provide GPU accelerated I/O, computer vision & image processing primitives for N-Dimensional images with a focus on biomedical imaging.

Project description

cuCIM

The RAPIDS cuCIM is an extensible toolkit designed to provide GPU accelerated I/O, computer vision & image processing primitives for N-Dimensional images with a focus on biomedical imaging.

NOTE: For the latest stable README.md ensure you are on the main branch.

Quick Start

Install cuCIM

pip install cucim

Open Image

from cucim import CuImage
img = CuImage('image.tif')

See Metadata

import json
print(img.is_loaded)        # True if image data is loaded & available.
print(img.device)           # A device type.
print(img.ndim)             # The number of dimensions.
print(img.dims)             # A string containing a list of dimensions being requested.
print(img.shape)            # A tuple of dimension sizes (in the order of `dims`).
print(img.size('XYC'))      # Returns size as a tuple for the given dimension order.
print(img.dtype)            # The data type of the image.
print(img.channel_names)    # A channel name list.
print(img.spacing())        # Returns physical size in tuple.
print(img.spacing_units())  # Units for each spacing element (size is same with `ndim`).
print(img.origin)           # Physical location of (0, 0, 0) (size is always 3).
print(img.direction)        # Direction cosines (size is always 3x3).
print(img.coord_sys)        # Coordinate frame in which the direction cosines are 
                            # measured. Available Coordinate frame is not finalized yet.

# Returns a set of associated image names.
print(img.associated_images)
# Returns a dict that includes resolution information.
print(json.dumps(img.resolutions, indent=2))
# A metadata object as `dict`
print(json.dumps(img.metadata, indent=2))
# A raw metadata string.
print(img.raw_metadata) 

Read Region

from matplotlib import pyplot as plt
def visualize(image):
    dpi = 80.0
    height, width, _ = image.shape
    plt.figure(figsize=(width / dpi, height / dpi))
    plt.axis('off')
    plt.imshow(image)
import numpy as np

# Read whole slide at the lowest resolution
resolutions = img.resolutions
level_count = resolutions["level_count"]

# Note: ‘level’ is at 3rd parameter (OpenSlide has it at 2nd parameter)
#   `location` is level-0 based coordinates (using the level-0 reference frame)
#   If `size` is not specified, size would be (width, height) of the image at the specified `level`.
region = img.read_region(location=(10000, 10000), size=(512, 512), level=level_count-1)

visualize(region)
#from PIL import Image
#Image.fromarray(np.asarray(region))

Acknowledgments

Without awesome third-party open source software, this project wouldn't exist.

Please find LICENSE-3rdparty.md to see which third-party open source software is used in this project.

License

Apache-2.0 License (see LICENSE file).

Copyright (c) 2020-2021, NVIDIA CORPORATION.

Changelog

0.18.1 (2021-03-17)

  • Disable using cuFile
    • Remove warning messages when libcufile.so is not available.
      • [warning] CuFileDriver cannot be open. Falling back to use POSIX file IO APIs.

0.18.0 (2021-03-16)

  • First release on PyPI with only cuClaraImage features.
  • The namespace of the project is changed from cuimage to cucim and project name is now cuCIM
  • Support Deflate(zlib) compression in Generic TIFF Format.
    • libdeflate library is used to decode the deflate-compressed data.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

cucim-0.18.1-py3-none-manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded Python 3

File details

Details for the file cucim-0.18.1-py3-none-manylinux2014_x86_64.whl.

File metadata

  • Download URL: cucim-0.18.1-py3-none-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.10

File hashes

Hashes for cucim-0.18.1-py3-none-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d4f101b61a702ce0086d65fd14d11a106493daae0bb2b29bccfd2e84b23320f
MD5 8acacd26bfd276926c565fbaf2048ee4
BLAKE2b-256 59deab8e40e094cfdc086f489c8226d0a32b4e457d67f063ac11e82bd5492491

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page