cuCIM - an extensible toolkit designed to provide GPU accelerated I/O, computer vision & image processing primitives for N-Dimensional images with a focus on biomedical imaging.
Project description
cuCIM
RAPIDS cuCIM is an extensible toolkit designed to provide GPU accelerated I/O, computer vision & image processing primitives for N-Dimensional images with a focus on biomedical imaging.
NOTE: For the latest stable README.md ensure you are on the main
branch.
- GTC 2021 cuCIM: A GPU Image I/O and Processing Toolkit [S32194]
- SciPy 2021 cuCIM - A GPU image I/O and processing library
Quick Start
Install cuCIM
pip install cucim
# Install dependencies for `cucim.skimage` (assuming that CUDA 11.0 is used for CuPy)
pip install scipy scikit-image cupy-cuda110
Jupyter Notebooks
Please check out our Welcome notebook.
Open Image
from cucim import CuImage
img = CuImage('image.tif')
See Metadata
import json
print(img.is_loaded) # True if image data is loaded & available.
print(img.device) # A device type.
print(img.ndim) # The number of dimensions.
print(img.dims) # A string containing a list of dimensions being requested.
print(img.shape) # A tuple of dimension sizes (in the order of `dims`).
print(img.size('XYC')) # Returns size as a tuple for the given dimension order.
print(img.dtype) # The data type of the image.
print(img.channel_names) # A channel name list.
print(img.spacing()) # Returns physical size in tuple.
print(img.spacing_units()) # Units for each spacing element (size is same with `ndim`).
print(img.origin) # Physical location of (0, 0, 0) (size is always 3).
print(img.direction) # Direction cosines (size is always 3x3).
print(img.coord_sys) # Coordinate frame in which the direction cosines are
# measured. Available Coordinate frame is not finalized yet.
# Returns a set of associated image names.
print(img.associated_images)
# Returns a dict that includes resolution information.
print(json.dumps(img.resolutions, indent=2))
# A metadata object as `dict`
print(json.dumps(img.metadata, indent=2))
# A raw metadata string.
print(img.raw_metadata)
Read Region
# Install matplotlib (`pip install matplotlib`) if not installed before.
from matplotlib import pyplot as plt
def visualize(image):
dpi = 80.0
height, width, _ = image.shape
plt.figure(figsize=(width / dpi, height / dpi))
plt.axis('off')
plt.imshow(image)
import numpy as np
# Read whole slide at the highest resolution
resolutions = img.resolutions
level_count = resolutions['level_count'] # level: 0 ~ (level_count - 1)
# Note: ‘level’ is at 3rd parameter (OpenSlide has it at 2nd parameter)
# `location` is level-0 based coordinates (using the level-0 reference frame)
# If `size` is not specified, size would be (width, height) of the image at the specified `level`.
region = img.read_region(location=(5000, 5000), size=(512, 512), level=0)
visualize(region)
#from PIL import Image
#Image.fromarray(np.asarray(region))
Using Cache
Please look at this notebook.
Using scikit-image API
Import cucim.skimage
instead of skimage
.
# The following code is modified from https://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_ihc_color_separation.html#sphx-glr-auto-examples-color-exposure-plot-ihc-color-separation-py
#
import cupy as cp # modified from: `import numpy as np`
import matplotlib.pyplot as plt
# from skimage import data
from cucim.skimage.color import rgb2hed, hed2rgb # modified from: `from skimage.color import rgb2hed, hed2rgb`
# Example IHC image
ihc_rgb = cp.asarray(region) # modified from: `ihc_rgb = data.immunohistochemistry()`
# Separate the stains from the IHC image
ihc_hed = rgb2hed(ihc_rgb)
# Create an RGB image for each of the stains
null = cp.zeros_like(ihc_hed[:, :, 0]) # np -> cp
ihc_h = hed2rgb(cp.stack((ihc_hed[:, :, 0], null, null), axis=-1)) # np -> cp
ihc_e = hed2rgb(cp.stack((null, ihc_hed[:, :, 1], null), axis=-1)) # np -> cp
ihc_d = hed2rgb(cp.stack((null, null, ihc_hed[:, :, 2]), axis=-1)) # np -> cp
# Display
fig, axes = plt.subplots(2, 2, figsize=(7, 6), sharex=True, sharey=True)
ax = axes.ravel()
ax[0].imshow(ihc_rgb.get()) # appended `.get()`
ax[0].set_title("Original image")
ax[1].imshow(ihc_h.get()) # appended `.get()`
ax[1].set_title("Hematoxylin")
ax[2].imshow(ihc_e.get()) # appended `.get()`
ax[2].set_title("Eosin")
ax[3].imshow(ihc_d.get()) # appended `.get()`
ax[3].set_title("DAB")
for a in ax.ravel():
a.axis('off')
fig.tight_layout()
Acknowledgments
Without awesome third-party open source software, this project wouldn't exist.
Please find LICENSE-3rdparty.md
to see which third-party open source software
is used in this project.
License
Apache-2.0 License (see LICENSE
file).
Copyright (c) 2020-2021, NVIDIA CORPORATION.
Changelog (See Release Notes)
21.10.01
- [New] Support Aperio SVS with CPU LZW and jpeg2k decoder (#141)
21.10.00
- [New] Add transforms for Digital Pathology (#100) @shekhardw @chirayuG-nvidia
- [New] Enable GDS and Support Runtime Context (enter, exit) for CuFileDriver and CuImage (#106) @gigony
- [New] Add a mechanism for user to know the availability of cucim.CuImage (#107) @gigony
- [New] Support raw RGB tiled TIFF (#108) @gigony
- [Bug] fix failing regionprops test cases (#110) @grlee77
- [Doc] Forward-merge branch-21.08 to branch-21.10 (#88) @jakirkham
- [Doc] Update PyPI cuCIM v21.08.01 README.md and CHANGELOG.md (#87) @gigony
- [Update] ENH Replace gpuci_conda_retry with gpuci_mamba_retry (#69) @dillon-cullinan
21.08.01
- [New] Add skimage.morphology.thin (#27)
- [Bug] Fix missing
__array_interface__
for associated_image(): (#48, #65) - [Testing] Added unit and performance tests for TIFF loaders (#62)
- [Bug] Fix Windows int-type Bug: (#72)
- [Update] Use more descriptive ElementwiseKernel names in cucim.skimage: (#75)
21.06.00
- Implement cache mechanism
- Add
__cuda_array_interface
. - Fix a memory leak in Deflate decoder.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file cucim-21.10.1-py3-none-manylinux2014_x86_64.whl
.
File metadata
- Download URL: cucim-21.10.1-py3-none-manylinux2014_x86_64.whl
- Upload date:
- Size: 5.4 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/54.1.2 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8cd30986da1df6cd432c449030c6b33b4956ca3d989b461dd9933c50fe043214 |
|
MD5 | 2d40c23ac9f8c27d8c42139cfb30750b |
|
BLAKE2b-256 | bac84d2a9d69a9c23eea4e08e80edc4700175de56ce64de245ebefae85108ed7 |