cuCIM - an extensible toolkit designed to provide GPU accelerated I/O, computer vision & image processing primitives for N-Dimensional images with a focus on biomedical imaging.
Project description
cuCIM
RAPIDS cuCIM is an extensible toolkit designed to provide GPU accelerated I/O, computer vision & image processing primitives for N-Dimensional images with a focus on biomedical imaging.
NOTE: For the latest stable README.md ensure you are on the main
branch.
- GTC 2021 cuCIM: A GPU Image I/O and Processing Toolkit [S32194]
- SciPy 2021 cuCIM - A GPU image I/O and processing library
Quick Start
Install cuCIM
pip install cucim
# Install dependencies for `cucim.skimage` (assuming that CUDA 11.0 is used for CuPy)
pip install scipy scikit-image cupy-cuda110
Jupyter Notebooks
Please check out our Welcome notebook.
Open Image
cuCIM's dataloader(cucim.CuImage
class) is currently supporting Digital-pathology specific image formats (tiled multi-resolution raw/deflate/lzw/JPEG/JPEG2000-compressed TIFF-like RGB images such as Generic TIFF, Philips TIFF, Aperio SVS format).
from cucim import CuImage
img = CuImage('image.tif')
See Metadata
import json
print(img.is_loaded) # True if image data is loaded & available.
print(img.device) # A device type.
print(img.ndim) # The number of dimensions.
print(img.dims) # A string containing a list of dimensions being requested.
print(img.shape) # A tuple of dimension sizes (in the order of `dims`).
print(img.size('XYC')) # Returns size as a tuple for the given dimension order.
print(img.dtype) # The data type of the image.
print(img.channel_names) # A channel name list.
print(img.spacing()) # Returns physical size in tuple.
print(img.spacing_units()) # Units for each spacing element (size is same with `ndim`).
print(img.origin) # Physical location of (0, 0, 0) (size is always 3).
print(img.direction) # Direction cosines (size is always 3x3).
print(img.coord_sys) # Coordinate frame in which the direction cosines are
# measured. Available Coordinate frame is not finalized yet.
# Returns a set of associated image names.
print(img.associated_images)
# Returns a dict that includes resolution information.
print(json.dumps(img.resolutions, indent=2))
# A metadata object as `dict`
print(json.dumps(img.metadata, indent=2))
# A raw metadata string.
print(img.raw_metadata)
Read Region
# Install matplotlib (`pip install matplotlib`) if not installed before.
from matplotlib import pyplot as plt
def visualize(image):
dpi = 80.0
height, width, _ = image.shape
plt.figure(figsize=(width / dpi, height / dpi))
plt.axis('off')
plt.imshow(image)
import numpy as np
# Read whole slide at the highest resolution
resolutions = img.resolutions
level_count = resolutions['level_count'] # level: 0 ~ (level_count - 1)
# Note: ‘level’ is at 3rd parameter (OpenSlide has it at 2nd parameter)
# `location` is level-0 based coordinates (using the level-0 reference frame)
# If `size` is not specified, size would be (width, height) of the image at the specified `level`.
region = img.read_region(location=(5000, 5000), size=(512, 512), level=0)
visualize(region)
#from PIL import Image
#Image.fromarray(np.asarray(region))
Aperio SVS (.svs) image format is supported since cuCIM v21.10.01.
Please check this notebook to see how to use the feature.
Using Cache
Please look at this notebook.
Accessing File with GDS
Please look at this notebook.
NVTX Support for Performance Analysis
Please look at this release note.
Supporting Multithreading and Batch Processing
Please look at this release note.
Using scikit-image API
Import cucim.skimage
instead of skimage
.
# The following code is modified from https://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_ihc_color_separation.html#sphx-glr-auto-examples-color-exposure-plot-ihc-color-separation-py
#
import cupy as cp # modified from: `import numpy as np`
import matplotlib.pyplot as plt
# from skimage import data
from cucim.skimage.color import rgb2hed, hed2rgb # modified from: `from skimage.color import rgb2hed, hed2rgb`
# Load image (You can download sample images from https://openslide.cs.cmu.edu/download/openslide-testdata/Aperio/)
from cucim import CuImage
img = CuImage("CMU-1.svs")
region = img.read_region((30000, 10000), (256, 256))
# Example IHC image
ihc_rgb = cp.asarray(region) # modified from: `ihc_rgb = data.immunohistochemistry()`
# Separate the stains from the IHC image
ihc_hed = rgb2hed(ihc_rgb)
# Create an RGB image for each of the stains
null = cp.zeros_like(ihc_hed[:, :, 0]) # np -> cp
ihc_h = hed2rgb(cp.stack((ihc_hed[:, :, 0], null, null), axis=-1)) # np -> cp
ihc_e = hed2rgb(cp.stack((null, ihc_hed[:, :, 1], null), axis=-1)) # np -> cp
ihc_d = hed2rgb(cp.stack((null, null, ihc_hed[:, :, 2]), axis=-1)) # np -> cp
# Display
fig, axes = plt.subplots(2, 2, figsize=(7, 6), sharex=True, sharey=True)
ax = axes.ravel()
ax[0].imshow(ihc_rgb.get()) # appended `.get()`
ax[0].set_title("Original image")
ax[1].imshow(ihc_h.get()) # appended `.get()`
ax[1].set_title("Hematoxylin")
ax[2].imshow(ihc_e.get()) # appended `.get()`
ax[2].set_title("Eosin")
ax[3].imshow(ihc_d.get()) # appended `.get()`
ax[3].set_title("DAB")
for a in ax.ravel():
a.axis('off')
fig.tight_layout()
Acknowledgments
Without awesome third-party open source software, this project wouldn't exist.
Please find LICENSE-3rdparty.md
to see which third-party open source software
is used in this project.
License
Apache-2.0 License (see LICENSE
file).
Copyright (c) 2020-2021, NVIDIA CORPORATION.
Changelog (See Release Notes)
22.02.01
- [Bug] Check nullptr of handler in CuFileDriver::close() (#229) @gigony
- [Bug] Handle file descriptor ownership and update documents for GDS (#234) @gigony
- [Bug] Apply fixes to skimage.transform scheduled for scikit-image 0.19.2 (#208) @grlee7
- [New] Randomization of transforms per image per batch (#231) @shekhardw
- [New] Expose data type of CuImage object for interoperability with NumPy (#246) @gigony
- [Update] Remove verbose plugin messages temporarily. Address #109 ([BUG] - Info messages appearing as warnings in Jupyter notebooks)
- [Doc] Fix docs builds (#218) @ajschmidt8
- [Doc] Update GTC 2021 Spring video links (#227) @gigony
- [Doc] Update documents for v22.02.00 (#226) @gigony
22.02.00
- [New/Breaking] Update cucim.skimage API to match scikit-image 0.19 (#190) @glee77
- [Bug] Fix a bug in v21.12.01 (#191) @gigony
- Fix GPU memory leak when using nvJPEG API (when
device='cuda'
parameter is used inread_region
method).
- Fix GPU memory leak when using nvJPEG API (when
- [Bug] Fix segfault for preferred_memory_capacity in Python 3.9+ (#214) @gigony
- [Doc] PyPI v21.12.00 release (#182) @gigony
- [New] Allow CuPy 10 (#195) @jakikham
- [New] Support multi-threads and batch, and support nvJPEG for JPEG-compressed images (#191) @gigony
- [New] Update cucim.skimage API to match scikit-image 0.19 (#190) @glee77
- [Update] Add missing imports tests (#183) @Ethyling
- [Update] Allow installation with CuPy 10 (#197) @glee77
- [Update] Upgrade Numpy to 1.18 for Python 3.9 support (#196) @Ethyling
- [Update] Upgrade Numpy to 1.19 for Python 3.9 support (#203) @Ethyling
21.12.01
21.12.00
- [New] Support Aperio SVS with CPU LZW and jpeg2k decoder (#141) @gigony
- [New] Add NVTX support for performance analysis (#144) @gigony
- [New] Normalize operation (#150) @shekhardw
- [Bug] Load libcufile.so with RTLD_NODELETE flag (#177) @gigony
- [Bug] Remove rmm/nvcc dependencies to fix cudaErrorUnsupportedPtxVersion error (#175) @gigony
- [Bug] Do not compile code with nvcc if no CUDA kernel exists (#171) @gigony
- [Bug] Fix a segmentation fault due to unloaded libcufile (#158) @gigony
- [Bug] Fix thread contention in Cache (#145) @gigony
- [Bug] Build with NumPy 1.17 (#148) @jakirkham
- [Doc] Add Jupyter notebook for SVS Support (#147) @gigony
- [Doc] Update change log for v21.10.01 (#142) @gigony
- [Doc] update docs theme to pydata-sphinx-theme (#138) @quasiben
- [Doc] Update Github links in README.md through script (#132) @gigony
- [Doc] Fix GDS link in Jupyter notebook (#131) @gigony
- [Doc] Update notebook for the interoperability with DALI (#127) @gigony
- [Update] Update
conda
recipes for Enhanced Compatibility effort by (#164) @ajschmidt8 - [Update] Fix Changelog Merge Conflicts for
branch-21.12
(#156) @ajschmidt8 - [Update] Add cucim.kit.cumed plugin with skeleton (#129) @gigony
- [Update] Update initial cpp unittests (#128) @gigony
- [Update] Optimize zoom out implementation with separate padding kernel (#125) @chirayuG-nvidia
- [Update] Do not force install linux-64 version of openslide-python (#124) @Ethyling
21.10.01
- [New] Support Aperio SVS with CPU LZW and jpeg2k decoder (#141)
21.10.00
- [New] Add transforms for Digital Pathology (#100) @shekhardw @chirayuG-nvidia
- [New] Enable GDS and Support Runtime Context (enter, exit) for CuFileDriver and CuImage (#106) @gigony
- [New] Add a mechanism for user to know the availability of cucim.CuImage (#107) @gigony
- [New] Support raw RGB tiled TIFF (#108) @gigony
- [Bug] fix failing regionprops test cases (#110) @grlee77
- [Doc] Forward-merge branch-21.08 to branch-21.10 (#88) @jakirkham
- [Doc] Update PyPI cuCIM v21.08.01 README.md and CHANGELOG.md (#87) @gigony
- [Update] ENH Replace gpuci_conda_retry with gpuci_mamba_retry (#69) @dillon-cullinan
21.08.02
- [New] Add transforms for Digital Pathology (#100) @shekhardw @chirayuG-nvidia
21.08.01
- [New] Add skimage.morphology.thin (#27)
- [Bug] Fix missing
__array_interface__
for associated_image(): (#48, #65) - [Testing] Added unit and performance tests for TIFF loaders (#62)
- [Bug] Fix Windows int-type Bug: (#72)
- [Update] Use more descriptive ElementwiseKernel names in cucim.skimage: (#75)
21.06.00
- Implement cache mechanism
- Add
__cuda_array_interface
. - Fix a memory leak in Deflate decoder.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file cucim-22.2.1-py3-none-manylinux2014_x86_64.whl
.
File metadata
- Download URL: cucim-22.2.1-py3-none-manylinux2014_x86_64.whl
- Upload date:
- Size: 8.3 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 41adf9038c17f070b63c715b3d6bad8595f53c7b369d496454d13d7196bb6c03 |
|
MD5 | c2c51099e3df8621a59a9fd55152dba0 |
|
BLAKE2b-256 | c8fd36d79db80963ebf35263405611a84fd390121a44b2bc77f1ce4477540d08 |