Skip to main content

cuDF - GPU Dataframe

Project description

 cuDF - GPU DataFrames

📢 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see here!

cuDF (pronounced "KOO-dee-eff") is a GPU DataFrame library for loading, joining, aggregating, filtering, and otherwise manipulating data. cuDF leverages libcudf, a blazing-fast C++/CUDA dataframe library and the Apache Arrow columnar format to provide a GPU-accelerated pandas API.

You can import cudf directly and use it like pandas:

import cudf

tips_df = cudf.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100

# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())

Or, you can use cuDF as a no-code-change accelerator for pandas, using cudf.pandas. cudf.pandas supports 100% of the pandas API, utilizing cuDF for supported operations and falling back to pandas when needed:

%load_ext cudf.pandas  # pandas operations now use the GPU!

import pandas as pd

tips_df = pd.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100

# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())

Resources

See the RAPIDS install page for the most up-to-date information and commands for installing cuDF and other RAPIDS packages.

Installation

CUDA/GPU requirements

  • CUDA 11.2+
  • NVIDIA driver 450.80.02+
  • Volta architecture or better (Compute Capability >=7.0)

Pip

cuDF can be installed via pip from the NVIDIA Python Package Index. Be sure to select the appropriate cuDF package depending on the major version of CUDA available in your environment:

For CUDA 11.x:

pip install --extra-index-url=https://pypi.nvidia.com cudf-cu11

For CUDA 12.x:

pip install --extra-index-url=https://pypi.nvidia.com cudf-cu12

Conda

cuDF can be installed with conda (via miniconda or the full Anaconda distribution from the rapidsai channel:

conda install -c rapidsai -c conda-forge -c nvidia \
    cudf=24.08 python=3.11 cuda-version=12.5

We also provide nightly Conda packages built from the HEAD of our latest development branch.

Note: cuDF is supported only on Linux, and with Python versions 3.9 and later.

See the RAPIDS installation guide for more OS and version info.

Build/Install from Source

See build instructions.

Contributing

Please see our guide for contributing to cuDF.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cudf_cu11-24.8.2.tar.gz (2.6 kB view details)

Uploaded Source

File details

Details for the file cudf_cu11-24.8.2.tar.gz.

File metadata

  • Download URL: cudf_cu11-24.8.2.tar.gz
  • Upload date:
  • Size: 2.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for cudf_cu11-24.8.2.tar.gz
Algorithm Hash digest
SHA256 578ae0e13c9e71d017aad2285a707f2eaa6ed0c0b686b4371d22f0a6e86e4dea
MD5 ee61f9614a707d97abd05757fe0c6c2c
BLAKE2b-256 a5045d06d681da2d159b6737c36db01d9952379df1a266d93da798977e945b94

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page