Skip to main content

CuPy: NumPy & SciPy for GPU

Project description

https://raw.githubusercontent.com/cupy/cupy/master/docs/image/cupy_logo_1000px.png

CuPy : NumPy & SciPy for GPU

CuPy is a NumPy/SciPy-compatible array library for GPU-accelerated computing with Python.

This is a CuPy wheel (precompiled binary) package for CUDA 11.0. You need to install CUDA Toolkit 11.0 to use these packages.

If you have another version of CUDA, or want to build from source, refer to the Installation Guide for instructions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

cupy_cuda110-10.4.0-cp310-cp310-win_amd64.whl (59.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

cupy_cuda110-10.4.0-cp310-cp310-manylinux1_x86_64.whl (78.6 MB view details)

Uploaded CPython 3.10

cupy_cuda110-10.4.0-cp39-cp39-win_amd64.whl (59.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

cupy_cuda110-10.4.0-cp39-cp39-manylinux1_x86_64.whl (78.5 MB view details)

Uploaded CPython 3.9

cupy_cuda110-10.4.0-cp38-cp38-win_amd64.whl (59.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

cupy_cuda110-10.4.0-cp38-cp38-manylinux1_x86_64.whl (80.3 MB view details)

Uploaded CPython 3.8

cupy_cuda110-10.4.0-cp37-cp37m-win_amd64.whl (59.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

cupy_cuda110-10.4.0-cp37-cp37m-manylinux1_x86_64.whl (77.0 MB view details)

Uploaded CPython 3.7m

File details

Details for the file cupy_cuda110-10.4.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for cupy_cuda110-10.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 aba15e587c8611be48ec36819f618931c05800233c9b6d9dcccffcc400dc5c12
MD5 45a854688fccda712a39918edb9f9fe8
BLAKE2b-256 cb7f55eac64c939c0c241b07500e3160e43d1178925bb946eae31238e8d94e18

See more details on using hashes here.

File details

Details for the file cupy_cuda110-10.4.0-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for cupy_cuda110-10.4.0-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 48bb9f96a3765e00c6c10dae1b4ea2dd5425ccdbfa7409c3946f007361b801be
MD5 4399b7bfdb7e3cbd4f82d1a327f4c728
BLAKE2b-256 849d5b905904f0c7087b76fc7b255134560c7612de92a17376eb5009f3c92454

See more details on using hashes here.

File details

Details for the file cupy_cuda110-10.4.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for cupy_cuda110-10.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 57a63304269756b5595c1ade99a43fdcec8434e177cc6af503bb7420000ae4b8
MD5 848773eb08caf83be0466818c8c8676f
BLAKE2b-256 f2fbe9cadd0030d067167dd5d9145780375f44ce5b2be63720414bc571966ab3

See more details on using hashes here.

File details

Details for the file cupy_cuda110-10.4.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for cupy_cuda110-10.4.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8e755c1ef639d99a72421e09d1cedb8d33d872823dace0664c17c3bf135d4762
MD5 dbcf3cde512935663b2b768f189faaa8
BLAKE2b-256 dd04c638e5be7dc28f52c20af46eb1dedb1d4c937aae312d67bdc8ded6306676

See more details on using hashes here.

File details

Details for the file cupy_cuda110-10.4.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for cupy_cuda110-10.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 db57b46153e5f9efd836ba3560e87566e1a8356d26ee74e351dacafbec8125c7
MD5 a26f1afbfc284be1dc9bc71537a92ced
BLAKE2b-256 dcf70dc2a11a73fbf19491366fabb2840247e323ea10ed67c2337b9664802579

See more details on using hashes here.

File details

Details for the file cupy_cuda110-10.4.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for cupy_cuda110-10.4.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 065d73086c92d1851108e66d49a6268468b5529d059a58761e552a96c7b8c20c
MD5 353136860cfae622001485a55b61610f
BLAKE2b-256 340f77e426e980602f6bdbaee060d1fa5e427fa1e453e01da47baeb10fe7b298

See more details on using hashes here.

File details

Details for the file cupy_cuda110-10.4.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for cupy_cuda110-10.4.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 25633301acc3ad20233e5a0f0cb92e636afa7d6a6766ba1f7301f90c72253930
MD5 2e98276c68a634e6d7745fa6fd9dffea
BLAKE2b-256 e87cd0cbd4ed2c38b16f0a9dfac8318b0d2eafdb085d3066a5cad7d02218faba

See more details on using hashes here.

File details

Details for the file cupy_cuda110-10.4.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for cupy_cuda110-10.4.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3478c866a1136c04face8005c357dbe9b2d17a0331334c8c12bea39add9b78bb
MD5 77ae4d3c4253742fdfd5d6897322ad78
BLAKE2b-256 72082c127e4c90e093ab6120277af6c461b72dcf963b98958cbeaa4ac598feef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page