Skip to main content

A Danish pipeline trained in SpaCy that has achieved State-of-the-Art performance on all dependency parsing, NER and POS-tagging for Danish

Project description

DaCy: An efficient and unified framework for danish NLP

PyPI pip downloads Python Version Black documentation Tests

DaCy is a Danish natural language preprocessing framework made with SpaCy. Its largest pipeline has achieved State-of-the-Art performance on Named entity recognition, part-of-speech tagging and dependency parsing for Danish. Feel free to try out the demo. This repository contains material for using DaCy, reproducing the results and guides on usage of the package. Furthermore, it also contains behavioural tests for biases and robustness of Danish NLP pipelines.

🔧 Installation

You can install dacy via pip from PyPI:

pip install dacy

👩‍💻 Usage

To use the model you first have to download either the small, medium, or large model. To see a list of all available models:

import dacy
for model in dacy.models():
    print(model)
# ...
# da_dacy_small_trf-0.2.0
# da_dacy_medium_trf-0.2.0
# da_dacy_large_trf-0.2.0

To download and load a model simply execute:

nlp = dacy.load("da_dacy_medium_trf-0.2.0")
# or equivalently (always loads the latest version)
nlp = dacy.load("medium")

To see more examples, see the documentation.

📖 Documentation

Documentation
📚 Getting started Guides and instructions on how to use DaCy and its features.
🦾 Performance A detailed description of the performance of DaCy and comparison with similar Danish models
📰 News and changelog New additions, changes and version history.
🎛 API References The detailed reference for DaCy's API. Including function documentation
🙋 FAQ Frequently asked questions

Training and reproduction

The folder training contains a range of folders with a SpaCy project for each model version. This allows for the reproduction of the results.

Want to learn more about how DaCy initially came to be, check out this blog post.


💬 Where to ask questions

To ask report issues or request features, please use the GitHub Issue Tracker. Questions related to SpaCy are kindly referred to the SpaCy GitHub or forum. Otherwise, please use the discussion Forums.

Type
📚 FAQ FAQ
🚨 Bug Reports GitHub Issue Tracker
🎁 Feature Requests & Ideas GitHub Issue Tracker
👩‍💻 Usage Questions GitHub Discussions
🗯 General Discussion GitHub Discussions

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dacy-2.7.1.tar.gz (4.2 MB view details)

Uploaded Source

Built Distribution

dacy-2.7.1-py3-none-any.whl (54.6 kB view details)

Uploaded Python 3

File details

Details for the file dacy-2.7.1.tar.gz.

File metadata

  • Download URL: dacy-2.7.1.tar.gz
  • Upload date:
  • Size: 4.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/37.3 requests/2.30.0 requests-toolbelt/1.0.0 urllib3/2.0.2 tqdm/4.65.0 importlib-metadata/6.6.0 keyring/23.13.1 rfc3986/2.0.0 colorama/0.4.6 CPython/3.10.11

File hashes

Hashes for dacy-2.7.1.tar.gz
Algorithm Hash digest
SHA256 dcd4842a160f91baeee19d9f3f3504e5a2b0b4c8765af4c3a1f6b9c38747f0a5
MD5 220ca5d7e226f4e1d5c1adb958e55730
BLAKE2b-256 751863cb74f1758132400209dda1a0566b160f1cb2e07393c8f790ff407fa38c

See more details on using hashes here.

File details

Details for the file dacy-2.7.1-py3-none-any.whl.

File metadata

  • Download URL: dacy-2.7.1-py3-none-any.whl
  • Upload date:
  • Size: 54.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/37.3 requests/2.30.0 requests-toolbelt/1.0.0 urllib3/2.0.2 tqdm/4.65.0 importlib-metadata/6.6.0 keyring/23.13.1 rfc3986/2.0.0 colorama/0.4.6 CPython/3.10.11

File hashes

Hashes for dacy-2.7.1-py3-none-any.whl
Algorithm Hash digest
SHA256 49755504d7de6a1689bf4455c8ea0df1539fb9a204aa7da69cac228fea914d31
MD5 b6d06a64e7d148b612c68fe00360db86
BLAKE2b-256 885f32e123845e147a67b6d8fc30b19c22666927e08914f90afc4578e5d981b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page