Skip to main content

Dask on DRMAA

Project description

Build Status PyPI Release conda-forge Release

Deploy a Dask.distributed cluster on top of a cluster running a DRMAA-compliant job scheduler.

Example

Launch from Python

from dask_drmaa import DRMAACluster
cluster = DRMAACluster()

from dask.distributed import Client
client = Client(cluster)
cluster.start_workers(2)

>>> future = client.submit(lambda x: x + 1, 10)
>>> future.result()
11

Or launch from the command line:

$ dask-drmaa 10  # starts local scheduler and ten remote workers

Install

Python packages are available from PyPI and can be installed with pip:

pip install dask-drmaa

Also conda packages are available from conda-forge:

conda install -c conda-forge dask-drmaa

Additionally the package can be installed from GitHub with the latest changes:

pip install git+https://github.com/dask/dask-drmaa.git --upgrade

or:

git clone git@github.com:dask/dask-drmaa.git
cd dask-drmaa
pip install .

You must have the DRMAA system library installed and be able to submit jobs from your local machine. Please make sure to set the environment variable DRMAA_LIBRARY_PATH to point to the location of libdrmaa.so for your system.

Testing

This repository contains a Docker-compose testing harness for a Son of Grid Engine cluster with a master and two slaves. You can initialize this system as follows:

docker-compose build
./start-sge.sh

If you have done this previously and need to refresh your solution you can do the following

docker-compose stop
docker-compose build --no-cache
./start-sge.sh

And run tests with py.test in the master docker container

docker exec -it sge_master /bin/bash -c "cd /dask-drmaa; python setup.py develop"
docker exec -it sge_master /bin/bash -c "cd /dask-drmaa; py.test dask_drmaa --verbose"

Adaptive Load

Dask-drmaa can adapt to scheduler load, deploying more workers on the grid when it has more work, and cleaning up these workers when they are no longer necessary. This can simplify setup (you can just leave a cluster running) and it can reduce load on the cluster, making IT happy.

To enable this, call the adapt method of a DRMAACluster. You can submit computations to the cluster without ever explicitly creating workers.

from dask_drmaa import DRMAACluster
from dask.distributed import Client

cluster = DRMAACluster()
cluster.adapt()
client = Client(cluster)

futures = client.map(func, seq)  # workers will be created as necessary

Extensible

The DRMAA interface is the lowest common denominator among many different job schedulers like SGE, SLURM, LSF, Torque, and others. However, sometimes users need to specify parameters particular to their cluster, such as resource queues, wall times, memory constraints, etc..

DRMAA allows users to pass native specifications either when constructing the cluster or when starting new workers:

cluster = DRMAACluster(template={'nativeSpecification': '-l h_rt=01:00:00'})
# or
cluster.start_workers(10, nativeSpecification='-l h_rt=01:00:00')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dask-drmaa-0.2.1.tar.gz (26.0 kB view details)

Uploaded Source

File details

Details for the file dask-drmaa-0.2.1.tar.gz.

File metadata

  • Download URL: dask-drmaa-0.2.1.tar.gz
  • Upload date:
  • Size: 26.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for dask-drmaa-0.2.1.tar.gz
Algorithm Hash digest
SHA256 8b02524c38138358da2076c3405a340b493a6f07f2a2865e6805edce073ca6d2
MD5 727264379162be849cca557be823bcc4
BLAKE2b-256 00479ee6f6be4e073ddfbe9a4afde31c3b2e574c26aa9ab13aebb5ad418f1fb2

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page