High Level Expressions for Dask
Project description
Dask Expressions
Dask Dataframes with query optimization.
This is a proof-of-concept rewrite of Dask dataframe that includes query optimization and generally improved organization.
Example
import dask_expr as dx
df = dx.datasets.timeseries()
df.head()
df.groupby("name").x.mean().compute()
Query Representation
Dask-expr encodes user code in an expression tree:
>>> df.x.mean().pprint()
Mean:
Projection: columns='x'
Timeseries: seed=1896674884
This expression tree will be optimized and modified before execution:
>>> df.x.mean().optimize().pprint()
Div:
Sum:
Fused(375f9):
| Projection: columns='x'
| Timeseries: dtypes={'x': <class 'float'>} seed=1896674884
Count:
Fused(375f9):
| Projection: columns='x'
| Timeseries: dtypes={'x': <class 'float'>} seed=1896674884
Stability
This project is a work in progress and will be changed without notice or deprecation warning. Please provide feedback, but it's best to avoid use in production settings.
API Coverage
dask_expr.DataFrame
abs
add_prefix
add_sufix
align
all
any
apply
assign
astype
clip
combine_first
copy
count
dask
drop
drop_duplicates
dropna
eval
explode
fillna
groupby
head
idxmax
idxmin
index
isin
isna
join
map
map_partitions
max
memory_usage
merge
min
min
mode
nlargest
nsmallest
nunique_approx
partitions
pivot_table
prod
rename
rename_axis
repartition
replace
reset_index
round
sample
sort_values
select_dtypes
set_index
shuffle
std
sum
tail
to_parquet
to_timestamp
var
visualize
dask_expr.Series
abs
align
all
any
apply
astype
between
clip
combine_first
copy
count
dask
drop_duplicates
dropna
explode
fillna
groupby
head
idxmax
idxmin
index
isin
isna
map
map_partitions
max
memory_usage
min
min
mode
nlargest
nsmallest
nunique_approx
partitions
prod
rename_axis
repartition
replace
reset_index
round
shuffle
std
sum
tail
to_frame
to_timestamp
unique
value_counts
var
visualize
dask_expr.Index
abs
align
all
any
apply
astype
clip
combine_first
copy
count
dask
fillna
groupby
head
idxmax
idxmin
index
isin
isna
map_partitions
max
memory_usage
min
min
mode
nunique_approx
partitions
prod
rename_axis
repartition
replace
reset_index
round
shuffle
std
sum
tail
to_frame
to_timestamp
var
visualize
dask_expr._groupby.GroupBy
agg
aggregate
count
first
last
max
mean
min
prod
size
std
sum
value_counts
var
Binary operators (DataFrame
, Series
, and Index
):
__add__
__radd__
__sub__
__rsub__
__mul__
__rmul__
__truediv__
__rtruediv__
__lt__
__rlt__
__gt__
__rgt__
__le__
__rle__
__ge__
__rge__
__eq__
__ne__
__and__
__rand__
__or__
__ror__
__xor__
__rxor__
Unary operators (DataFrame
, Series
, and Index
):
__invert__
__neg__
__pos__
Accessors:
CategoricalAccessor
DatetimeAccessor
StringAccessor
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file dask-expr-0.1.7.tar.gz
.
File metadata
- Download URL: dask-expr-0.1.7.tar.gz
- Upload date:
- Size: 71.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5864caac8d6756d2e2a93381d155817bedc00e4f8a2b712a462fe605412547ec |
|
MD5 | 6c5a919cd41db424398b880de23b44f9 |
|
BLAKE2b-256 | b62ad152b4cacfe4b55fe181cacc21b4ca54d00ac89f2a70a8d6e47d5afe1ca0 |
Provenance
File details
Details for the file dask_expr-0.1.7-py3-none-any.whl
.
File metadata
- Download URL: dask_expr-0.1.7-py3-none-any.whl
- Upload date:
- Size: 78.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1c4a9989c3173d0988a866e4606a0f02dafb627d1342649484a1e7ba5314d14c |
|
MD5 | d24ce7cf69b46e5d320bca047983c51f |
|
BLAKE2b-256 | 5157f8433f6fb81a73fd0c2999787df7980e2280292dbf9f8a570de6e988f9ba |