Skip to main content

xarray Dataset from CASA Tables

Project description

https://img.shields.io/pypi/v/dask-ms.svg https://github.com/ratt-ru/dask-ms/actions/workflows/ci.yml/badge.svg Documentation Status

Constructs xarray Datasets from CASA Tables via python-casacore. The Variables contained in the Dataset are dask arrays backed by deferred calls to casacore.tables.table.getcol.

Supports writing Variables back to the respective column in the Table.

The intention behind this package is to support the Measurement Set as a data source and sink for the purposes of writing parallel, distributed Radio Astronomy algorithms.

Installation

To install with xarray support:

$ pip install dask-ms[xarray]

Without xarray similar, but reduced Dataset functionality is replicated in dask-ms itself. Expert users may wish to use this option to reduce python package dependencies.

$ pip install dask-ms

Documentation

https://dask-ms.readthedocs.io

Gitter Page

https://gitter.im/dask-ms/community

Example Usage

  import dask.array as da
  from daskms import xds_from_table, xds_to_table

  # Create xarray datasets from Measurement Set "WSRT.MS"
  ds = xds_from_table("WSRT.MS")
  # Set the flag Variable on first Dataset to it's inverse
  ds[0]['flag'] = (ds[0].flag.dims, da.logical_not(ds[0].flag))
  # Write the flag column back to the Measurement Set
  xds_to_table(ds, "WSRT.MS", "FLAG").compute()

  print ds

[<xarray.Dataset>
 Dimensions:         (chan: 64, corr: 4, row: 6552, uvw: 3)
 Coordinates:
     ROWID           (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
 Dimensions without coordinates: chan, corr, row, uvw
 Data variables:
     IMAGING_WEIGHT  (row, chan) float32 dask.array<shape=(6552, 64), chunksize=(6552, 64)>
     ANTENNA1        (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     STATE_ID        (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     EXPOSURE        (row) float64 dask.array<shape=(6552,), chunksize=(6552,)>
     MODEL_DATA      (row, chan, corr) complex64 dask.array<shape=(6552, 64, 4), chunksize=(6552, 64, 4)>
     FLAG_ROW        (row) bool dask.array<shape=(6552,), chunksize=(6552,)>
     CORRECTED_DATA  (row, chan, corr) complex64 dask.array<shape=(6552, 64, 4), chunksize=(6552, 64, 4)>
     PROCESSOR_ID    (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     WEIGHT          (row, corr) float32 dask.array<shape=(6552, 4), chunksize=(6552, 4)>
     FLAG            (row, chan, corr) bool dask.array<shape=(6552, 64, 4), chunksize=(6552, 64, 4)>
     TIME            (row) float64 dask.array<shape=(6552,), chunksize=(6552,)>
     SIGMA           (row, corr) float32 dask.array<shape=(6552, 4), chunksize=(6552, 4)>
     SCAN_NUMBER     (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     INTERVAL        (row) float64 dask.array<shape=(6552,), chunksize=(6552,)>
     OBSERVATION_ID  (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     TIME_CENTROID   (row) float64 dask.array<shape=(6552,), chunksize=(6552,)>
     ARRAY_ID        (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     ANTENNA2        (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     DATA            (row, chan, corr) complex64 dask.array<shape=(6552, 64, 4), chunksize=(6552, 64, 4)>
     FEED1           (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     FEED2           (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     UVW             (row, uvw) float64 dask.array<shape=(6552, 3), chunksize=(6552, 3)>
 Attributes:
     FIELD_ID:      0
     DATA_DESC_ID:  0]

Limitations

  1. Many Measurement Sets columns are defined as variably shaped, but the actual data is fixed. dask-ms will infer the shape of the data from the first row and must be consistent with that of other rows. For example, this may be issue where multiple Spectral Windows are present in the Measurement Set with differing channels per SPW.

    dask-ms works around this by partitioning the Measurement Set into multiple datasets. The first row’s shape is used to infer the shape of the partition. Thus, in the case of multiple Spectral Window’s, we can partition the Measurement Set by DATA_DESC_ID to create a dataset for each Spectral Window.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dask_ms-0.2.20.tar.gz (107.8 kB view details)

Uploaded Source

Built Distribution

dask_ms-0.2.20-py3-none-any.whl (138.3 kB view details)

Uploaded Python 3

File details

Details for the file dask_ms-0.2.20.tar.gz.

File metadata

  • Download URL: dask_ms-0.2.20.tar.gz
  • Upload date:
  • Size: 107.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for dask_ms-0.2.20.tar.gz
Algorithm Hash digest
SHA256 708389c078e908dedd23d823019776a9124b4f009ebea834f798e8a8a3a0e1c3
MD5 edbe6705397b49cedabd90827ff9a3cb
BLAKE2b-256 664db284aec8080e2d1072ae5b6936c8af76bf1e8b993fa62b970ea0cf37db1e

See more details on using hashes here.

File details

Details for the file dask_ms-0.2.20-py3-none-any.whl.

File metadata

  • Download URL: dask_ms-0.2.20-py3-none-any.whl
  • Upload date:
  • Size: 138.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for dask_ms-0.2.20-py3-none-any.whl
Algorithm Hash digest
SHA256 6bceb24b9fd314bdbd4b0ab6a1cb35962af9b74f54886263078d845a81b54ad7
MD5 3a852556086be0b047558ac692e995d8
BLAKE2b-256 0a21ce44d1d86d13f3cbf36b6bdf9abc0b234bac1f9ed34494831947bb96a714

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page