Skip to main content

xarray Datasets from CASA Tables.

Project description

https://img.shields.io/pypi/v/dask-ms.svg https://github.com/ratt-ru/dask-ms/actions/workflows/ci.yml/badge.svg Documentation Status

Constructs xarray Datasets from CASA Tables via python-casacore. The Variables contained in the Dataset are dask arrays backed by deferred calls to pyrap.tables.table.getcol.

Supports writing Variables back to the respective column in the Table.

The intention behind this package is to support the Measurement Set as a data source and sink for the purposes of writing parallel, distributed Radio Astronomy algorithms.

Installation

To install with xarray support:

$ pip install dask-ms[xarray]

Without xarray similar, but reduced Dataset functionality is replicated in dask-ms itself. Expert users may wish to use this option to reduce python package dependencies.

$ pip install dask-ms

Documentation

https://dask-ms.readthedocs.io

Gitter Page

https://gitter.im/dask-ms/community

Example Usage

  import dask.array as da
  from daskms import xds_from_table, xds_to_table

  # Create xarray datasets from Measurement Set "WSRT.MS"
  ds = xds_from_table("WSRT.MS")
  # Set the flag Variable on first Dataset to it's inverse
  ds[0]['flag'] = (ds[0].flag.dims, da.logical_not(ds[0].flag))
  # Write the flag column back to the Measurement Set
  xds_to_table(ds, "WSRT.MS", "FLAG").compute()

  print ds

[<xarray.Dataset>
 Dimensions:         (chan: 64, corr: 4, row: 6552, uvw: 3)
 Coordinates:
     ROWID           (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
 Dimensions without coordinates: chan, corr, row, uvw
 Data variables:
     IMAGING_WEIGHT  (row, chan) float32 dask.array<shape=(6552, 64), chunksize=(6552, 64)>
     ANTENNA1        (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     STATE_ID        (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     EXPOSURE        (row) float64 dask.array<shape=(6552,), chunksize=(6552,)>
     MODEL_DATA      (row, chan, corr) complex64 dask.array<shape=(6552, 64, 4), chunksize=(6552, 64, 4)>
     FLAG_ROW        (row) bool dask.array<shape=(6552,), chunksize=(6552,)>
     CORRECTED_DATA  (row, chan, corr) complex64 dask.array<shape=(6552, 64, 4), chunksize=(6552, 64, 4)>
     PROCESSOR_ID    (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     WEIGHT          (row, corr) float32 dask.array<shape=(6552, 4), chunksize=(6552, 4)>
     FLAG            (row, chan, corr) bool dask.array<shape=(6552, 64, 4), chunksize=(6552, 64, 4)>
     TIME            (row) float64 dask.array<shape=(6552,), chunksize=(6552,)>
     SIGMA           (row, corr) float32 dask.array<shape=(6552, 4), chunksize=(6552, 4)>
     SCAN_NUMBER     (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     INTERVAL        (row) float64 dask.array<shape=(6552,), chunksize=(6552,)>
     OBSERVATION_ID  (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     TIME_CENTROID   (row) float64 dask.array<shape=(6552,), chunksize=(6552,)>
     ARRAY_ID        (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     ANTENNA2        (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     DATA            (row, chan, corr) complex64 dask.array<shape=(6552, 64, 4), chunksize=(6552, 64, 4)>
     FEED1           (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     FEED2           (row) int32 dask.array<shape=(6552,), chunksize=(6552,)>
     UVW             (row, uvw) float64 dask.array<shape=(6552, 3), chunksize=(6552, 3)>
 Attributes:
     FIELD_ID:      0
     DATA_DESC_ID:  0]

Limitations

  1. Many Measurement Sets columns are defined as variably shaped, but the actual data is fixed. dask-ms will infer the shape of the data from the first row and must be consistent with that of other rows. For example, this may be issue where multiple Spectral Windows are present in the Measurement Set with differing channels per SPW.

    dask-ms works around this by partitioning the Measurement Set into multiple datasets. The first row’s shape is used to infer the shape of the partition. Thus, in the case of multiple Spectral Window’s, we can partition the Measurement Set by DATA_DESC_ID to create a dataset for each Spectral Window.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dask-ms-0.2.9.tar.gz (97.0 kB view details)

Uploaded Source

Built Distribution

dask_ms-0.2.9-py3-none-any.whl (120.6 kB view details)

Uploaded Python 3

File details

Details for the file dask-ms-0.2.9.tar.gz.

File metadata

  • Download URL: dask-ms-0.2.9.tar.gz
  • Upload date:
  • Size: 97.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for dask-ms-0.2.9.tar.gz
Algorithm Hash digest
SHA256 81e7a97376a6f50f89502691df19ece55c467256e168d5f2da37b02381267195
MD5 fba121afb19d6bedb15ea255dceb2ff2
BLAKE2b-256 2ff5b9eb094d522500314f616b412c76703ab5e407d475273beae3e891ac51e7

See more details on using hashes here.

File details

Details for the file dask_ms-0.2.9-py3-none-any.whl.

File metadata

  • Download URL: dask_ms-0.2.9-py3-none-any.whl
  • Upload date:
  • Size: 120.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for dask_ms-0.2.9-py3-none-any.whl
Algorithm Hash digest
SHA256 79a647a271c6907a48c3a921bf0d76f6e7775813494dc128a234de24bed5b37c
MD5 f3e16e570a94405b39b35f081e464ba5
BLAKE2b-256 b356e264ed7c9669db2f7e367cb9341d4c708251f03bda47eec6072add0fa9df

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page