Scaling Optuna with Dask
Project description
Dask-Optuna
Dask-Optuna helps improve integration between Optuna and Dask
by leveraging Optuna's existing distributed optimization capabilities to run
optimization trials in parallel on a Dask cluster. It does this by providing a
Dask-compatible dask_optuna.DaskStorage
storage class which wraps an
Optuna storage class (e.g. Optuna's in-memory or sqlite storage) and can be used
directly by Optuna. For example:
import optuna
import joblib
import dask.distributed
import dask_optuna
def objective(trial):
x = trial.suggest_uniform("x", -10, 10)
return (x - 2) ** 2
with dask.distributed.Client() as client:
# Create a study using Dask-compatible storage
storage = dask_optuna.DaskStorage()
study = optuna.create_study(storage=storage)
# Optimize in parallel on your Dask cluster
with joblib.parallel_backend("dask"):
study.optimize(objective, n_trials=100, n_jobs=-1)
print(f"best_params = {study.best_params}")
Documentation
See the Dask-Optuna documentation for more information.
License
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dask-optuna-0.0.2.tar.gz
(26.6 kB
view details)
Built Distribution
File details
Details for the file dask-optuna-0.0.2.tar.gz
.
File metadata
- Download URL: dask-optuna-0.0.2.tar.gz
- Upload date:
- Size: 26.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 242fd77505d042315ea43cc81e604902021329378ba76aab21420df1a028fb09 |
|
MD5 | 5aacf62ef24774df6fd62438c38d7af9 |
|
BLAKE2b-256 | 2a2278e8be7fea557a78e8323bb8af3818b07ecd364c8e4335bfbd3fb67fbf38 |
Provenance
File details
Details for the file dask_optuna-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: dask_optuna-0.0.2-py3-none-any.whl
- Upload date:
- Size: 9.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a069dd4381d58bf5a66b6629378c3a2940a1392728e86f78aac9e7485eab2981 |
|
MD5 | 402981ab12e479250dfed5c79486b4de |
|
BLAKE2b-256 | 737c75631fa55c7263334131a4e7e043e968090d7175d7b49be56d8bc0f470d5 |