Skip to main content

Scaling Optuna with Dask

Project description

Dask-Optuna

Tests Documentation Pre-commit

Dask-Optuna helps improve integration between Optuna and Dask by leveraging Optuna's existing distributed optimization capabilities to run optimization trials in parallel on a Dask cluster. It does this by providing a Dask-compatible dask_optuna.DaskStorage storage class which wraps an Optuna storage class (e.g. Optuna's in-memory or sqlite storage) and can be used directly by Optuna. For example:

import optuna
import joblib
import dask.distributed
import dask_optuna

def objective(trial):
    x = trial.suggest_uniform("x", -10, 10)
    return (x - 2) ** 2

with dask.distributed.Client() as client:
    # Create a study using Dask-compatible storage
    storage = dask_optuna.DaskStorage()
    study = optuna.create_study(storage=storage)
    # Optimize in parallel on your Dask cluster
    with joblib.parallel_backend("dask"):
        study.optimize(objective, n_trials=100, n_jobs=-1)
    print(f"best_params = {study.best_params}")

Documentation

See the Dask-Optuna documentation for more information.

License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dask-optuna-0.0.2.tar.gz (26.6 kB view details)

Uploaded Source

Built Distribution

dask_optuna-0.0.2-py3-none-any.whl (9.1 kB view details)

Uploaded Python 3

File details

Details for the file dask-optuna-0.0.2.tar.gz.

File metadata

  • Download URL: dask-optuna-0.0.2.tar.gz
  • Upload date:
  • Size: 26.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for dask-optuna-0.0.2.tar.gz
Algorithm Hash digest
SHA256 242fd77505d042315ea43cc81e604902021329378ba76aab21420df1a028fb09
MD5 5aacf62ef24774df6fd62438c38d7af9
BLAKE2b-256 2a2278e8be7fea557a78e8323bb8af3818b07ecd364c8e4335bfbd3fb67fbf38

See more details on using hashes here.

Provenance

File details

Details for the file dask_optuna-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: dask_optuna-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 9.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for dask_optuna-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a069dd4381d58bf5a66b6629378c3a2940a1392728e86f78aac9e7485eab2981
MD5 402981ab12e479250dfed5c79486b4de
BLAKE2b-256 737c75631fa55c7263334131a4e7e043e968090d7175d7b49be56d8bc0f470d5

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page