Skip to main content

Tools for doing hyperparameter search with Scikit-Learn and Dask

Project description

Travis Status Documentation Status Conda Badge PyPI Badge

Tools for performing hyperparameter search with Scikit-Learn and Dask.

Highlights

  • Drop-in replacement for Scikit-Learn’s GridSearchCV and RandomizedSearchCV.

  • Hyperparameter optimization can be done in parallel using threads, processes, or distributed across a cluster.

  • Works well with Dask collections. Dask arrays, dataframes, and delayed can be passed to fit.

  • Candidate estimators with identical parameters and inputs will only be fit once. For composite-estimators such as Pipeline this can be significantly more efficient as it can avoid expensive repeated computations.

For more information, check out the documentation.

Install

Dask-searchcv is available via conda or pip:

# Install with conda
$ conda install dask-searchcv -c conda-forge

# Install with pip
$ pip install dask-searchcv

Example

from sklearn.datasets import load_digits
from sklearn.svm import SVC
import dask_searchcv as dcv
import numpy as np

digits = load_digits()

param_space = {'C': np.logspace(-4, 4, 9),
               'gamma': np.logspace(-4, 4, 9),
               'class_weight': [None, 'balanced']}

model = SVC(kernel='rbf')
search = dcv.GridSearchCV(model, param_space, cv=3)

search.fit(digits.data, digits.target)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dask-searchcv-0.2.0.tar.gz (52.3 kB view details)

Uploaded Source

Built Distribution

dask_searchcv-0.2.0-py2.py3-none-any.whl (40.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file dask-searchcv-0.2.0.tar.gz.

File metadata

File hashes

Hashes for dask-searchcv-0.2.0.tar.gz
Algorithm Hash digest
SHA256 c1eaa9271dadc0d25659550352e883402dc7c28a217209c4715d5b46556a8565
MD5 92a9343242f93232058df71215115945
BLAKE2b-256 a9abac49083e81aa1527ef2d0cd30a0ea1260c7e74262174ddbc6c8a7a94f816

See more details on using hashes here.

Provenance

File details

Details for the file dask_searchcv-0.2.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for dask_searchcv-0.2.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 e869bd7850fe197fd3084502b6a3b03cb818cda75ef4ce026647c764b3bacf3d
MD5 d9623b912f9196849cd809aabeaa456b
BLAKE2b-256 5d02a83e3146c314d4ab38d9c604c8bc11058b0b6d52a562ab2b043951a27277

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page