Skip to main content

Dask SQL

Project description

Conda PyPI GitHub Workflow Status Read the Docs Codecov GitHub Binder

SQL + Python

dask-sql is a distributed SQL query engine in Python. It allows you to query and transform your data using a mixture of common SQL operations and Python code and also scale up the calculation easily if you need it.

  • Combine the power of Python and SQL: load your data with Python, transform it with SQL, enhance it with Python and query it with SQL - or the other way round. With dask-sql you can mix the well known Python dataframe API of pandas and Dask with common SQL operations, to process your data in exactly the way that is easiest for you.
  • Infinite Scaling: using the power of the great Dask ecosystem, your computations can scale as you need it - from your laptop to your super cluster - without changing any line of SQL code. From k8s to cloud deployments, from batch systems to YARN - if Dask supports it, so will dask-sql.
  • Your data - your queries: Use Python user-defined functions (UDFs) in SQL without any performance drawback and extend your SQL queries with the large number of Python libraries, e.g. machine learning, different complicated input formats, complex statistics.
  • Easy to install and maintain: dask-sql is just a pip/conda install away (or a docker run if you prefer). No need for complicated cluster setups - dask-sql will run out of the box on your machine and can be easily connected to your computing cluster.
  • Use SQL from wherever you like: dask-sql integrates with your jupyter notebook, your normal Python module or can be used as a standalone SQL server from any BI tool. It even integrates natively with Apache Hue.

Read more in the documentation.

dask-sql GIF

Example

For this example, we use some data loaded from disk and query them with a SQL command from our python code. Any pandas or dask dataframe can be used as input and dask-sql understands a large amount of formats (csv, parquet, json,...) and locations (s3, hdfs, gcs,...).

import dask.dataframe as dd
from dask_sql import Context

# Create a context to hold the registered tables
c = Context()

# Load the data and register it in the context
# This will give the table a name, that we can use in queries
df = dd.read_csv("...")
c.create_table("my_data", df)

# Now execute a SQL query. The result is again dask dataframe.
result = c.sql("""
    SELECT
        my_data.name,
        SUM(my_data.x)
    FROM
        my_data
    GROUP BY
        my_data.name
""", return_futures=False)

# Show the result
print(result)

Quickstart

Have a look into the documentation or start the example notebook on binder.

dask-sql is currently under development and does so far not understand all SQL commands (but a large fraction). We are actively looking for feedback, improvements and contributors!

If you would like to utilize GPUs for your SQL queries, have a look into the blazingSQL project.

Installation

dask-sql can be installed via conda (preferred) or pip - or in a development environment.

With conda

Create a new conda environment or use your already present environment:

conda create -n dask-sql
conda activate dask-sql

Install the package from the conda-forge channel:

conda install dask-sql -c conda-forge

With pip

dask-sql needs Java for the parsing of the SQL queries. Make sure you have a running java installation with version >= 8.

To test if you have Java properly installed and set up, run

$ java -version
openjdk version "1.8.0_152-release"
OpenJDK Runtime Environment (build 1.8.0_152-release-1056-b12)
OpenJDK 64-Bit Server VM (build 25.152-b12, mixed mode)

After installing Java, you can install the package with

pip install dask-sql

For development

If you want to have the newest (unreleased) dask-sql version or if you plan to do development on dask-sql, you can also install the package from sources.

git clone https://github.com/nils-braun/dask-sql.git

Create a new conda environment and install the development environment:

conda create -n dask-sql --file conda.txt -c conda-forge

It is not recommended to use pip instead of conda for the environment setup. If you however need to, make sure to have Java (jdk >= 8) and maven installed and correctly setup before continuing. Have a look into conda.txt for the rest of the development environment.

After that, you can install the package in development mode

pip install -e ".[dev]"

To compile the Java classes (at the beginning or after changes), run

python setup.py java

This repository uses pre-commit hooks. To install them, call

pre-commit install

Testing

You can run the tests (after installation) with

pytest tests

SQL Server

dask-sql comes with a small test implementation for a SQL server. Instead of rebuilding a full ODBC driver, we re-use the presto wire protocol. It is - so far - only a start of the development and missing important concepts, such as authentication.

You can test the sql presto server by running (after installation)

dask-sql-server

or by using the created docker image

docker run --rm -it -p 8080:8080 nbraun/dask-sql

in one terminal. This will spin up a server on port 8080 (by default) that looks similar to a normal presto database to any presto client.

You can test this for example with the default presto client:

presto --server localhost:8080

Now you can fire simple SQL queries (as no data is loaded by default):

=> SELECT 1 + 1;
 EXPR$0
--------
    2
(1 row)

You can find more information in the documentation.

CLI

You can also run the CLI dask-sql for testing out SQL commands quickly:

dask-sql --load-test-data --startup

(dask-sql) > SELECT * FROM timeseries LIMIT 10;

How does it work?

At the core, dask-sql does two things:

  • translate the SQL query using Apache Calcite into a relational algebra, which is specified as a tree of java objects - similar to many other SQL engines (Hive, Flink, ...)
  • convert this description of the query from java objects into dask API calls (and execute them) - returning a dask dataframe.

For the first step, Apache Calcite needs to know about the columns and types of the dask dataframes, therefore some java classes to store this information for dask dataframes are defined in planner. After the translation to a relational algebra is done (using RelationalAlgebraGenerator.getRelationalAlgebra), the python methods defined in dask_sql.physical turn this into a physical dask execution plan by converting each piece of the relational algebra one-by-one.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dask_sql-0.3.3.tar.gz (19.8 MB view details)

Uploaded Source

Built Distribution

dask_sql-0.3.3-py3-none-any.whl (19.3 MB view details)

Uploaded Python 3

File details

Details for the file dask_sql-0.3.3.tar.gz.

File metadata

  • Download URL: dask_sql-0.3.3.tar.gz
  • Upload date:
  • Size: 19.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.2

File hashes

Hashes for dask_sql-0.3.3.tar.gz
Algorithm Hash digest
SHA256 de6a817587f9464014d55c2b8d32ced56fb25479436e3f3df05893733373bdaf
MD5 1870f28a6fa175fd51fa5b8dd208c7da
BLAKE2b-256 ddb7ab96b935d764cd102899729feb367fbe7ce1a6df0dfb4dbb5f7d0619d83b

See more details on using hashes here.

File details

Details for the file dask_sql-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: dask_sql-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 19.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.2

File hashes

Hashes for dask_sql-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 3819c70875294cef95698631d435b99d42d1fc340c983aec71569db52df8a3df
MD5 a749c6e76fe53e7547add3291bd2c1d5
BLAKE2b-256 5499e527962c345180f5a4fdb097029e4b52ab289b452d74893378c0466404b9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page